BibTex RIS Kaynak Göster

METAL VE METALOKSİT NANOPARTİKÜLLERİNİ İÇEREN HİDROJELLERİN ANTİMİKROBİYAL ÖZELLİKLERİNİN İNCELENMESİ

Yıl 2016, Cilt: 18 Sayı: 53, 224 - 238, 01.05.2016

Öz

In the present study, we prepared hydrogels containing synthesized TiO2, commercial TiO2 (21 nm), TiO2 (<100 nm), Ag (<100 nm) and ZnO (<50 nm) nanoparticles to investigate the antibacterial properties of these hydrogels. TiO2, Ag and ZnO containing hygrogels were characterized using Thermogravimetry (TGA) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The antibacterial activities of the hydrogels against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were measured by the airborne testing and modified Kirby Bauer disk diffusion methods. Finally, we demonstrated the presence of antibacterial activity in the hydrogels containing synthesized TiO2, commercial Ag (<100 nm) and ZnO (<50 nm) nanoparticles

Kaynakça

  • Morones JR, Elechiguerra JL, Camacho A vd. The Bactericidal Effect of Silver Nanoparticles, Nanotechnology, Cilt. 16, 2005, s.2346–2353.
  • Suri SS, Fenniri H, Singh B. Nanotechnology-Based Drug Delivery Systems, J. Occup. Med. Toxicol., Cilt. 2, No. 16, 2007.
  • Stoimenov PK, Klinger RL, Marchin GL. Metaloxide Nanoparticles as Bactericidal Agents, Langmuir, Cilt. 18, No. 17, 2002, s.6679-6686,.
  • Ravikumar S, Gokulakrishnan R, Selvanathan K vd. Antibacterial Activity of Metal Oxide Nanoparticles Against Ophthalmic Pathogens, Int. J. Pharm. Res. Dev., Cilt. 3, No. 5, 2011, s.122-127.
  • Rajendra R, Balakumar C, Ahammed HAM vd. Use of Zinc Oxide Nanoparticles for Production of Antimicrobial Textiles, Int. J. Eng. Sci. Tech., Cilt. 2, No. 1, 2010, s.202- 208.
  • Padmavathy N, Vijayaraghavan R. Enhanced Bioactivity of ZnO Nanoparticles an Antimicrobial Study, Sci. Tech. Adv. Mater, Cilt. 9, 2008.
  • Hosseinkhani P, Zand AM, Imani S vd. Determining the Antibacterial Effect of ZnO Nanoparticle Against the Pathogenic Bacterium, Shigella dysenteriae (type 1), Int. J. Nano. Dim., Cilt. 1, No. 4, 2011, s.279-285.
  • Sunita J, Suresh G, Madhav N vd. Copper Oxide Nanoparticles: Synthesis, Characterization and Their Antibacterial Activity, J. Clust. Sci., Cilt. 22, No. 2, 2011, s.121-129.
  • Kiss B, Biro T, Czifra G vd. Investigation of Micronized Titanium Dioxide Penetration in Human Skin Xenografts and its Effect on Cellular Functions of Human Skin-Derived Cells, Exp. Dermatol., Cilt. 17, 2008, s.659-667.
  • Erem DA. Nanokompozit Yapılı Tekstillerin Geliştirilmesi ve Antimikrobiyal Özellik Kazandırılması, Doktora Tezi, İstanbul: İstanbul Teknik Üniversitesi, Tekstil Mühendisliği, 2012.
  • Abamor EŞ. Gümüş (Ag) ve Titanyum Dioksit (TiO2) Nanopartiküllerinin Kütanöz Leishmaniasis Etkeni L.tropica Parazitleri Üzerindeki Antileishmanial Etkilerinin İncelenmesi, Yüksek Lisans Tezi, İstanbul: Yıldız Teknik Üniversitesi, Biyomühendislik, 2010.
  • Carmona D, Lalueza P, Balas F, Arruebo M, Santamaría J. Mesoporous Silica Loaded with Peracetic Acid and Silver Nanoparticles as a Dual-Effect, Highly Efficient Bactericidal Agent, Micro. Meso. Mater., Cilt. 161, 2012, s.84-90.
  • Landry BK, Nadworny PL, Omotoso OE, Maham Y, Burrell JC, Burrell RE. The Kinetics of Thermal Instability in Nanocrystalline Silver and the Effect of Heat Treatment on The Antibacterial Activity of Nanocrystalline Silver Dressings, Biomaterials, Cilt. 30, No. 36, 2009, s.6929-6939.
  • Raffi M, Hussain F, Bhatti T, Akhter JI, Hameed A, Hasan MM. Antibacterial Characterization of Silver Nanoparticles Against E.coli ATCC-15224, J. Mater. Sci. Technol., Cilt. 24, No. 2, 2008, s.192-196.
  • Rai M, Yadav A, Gade A. Silver Nanoparticles as a New Generation of Antimicrobials, Biotech. Adv., Cilt. 27, No. 1, 2009, s.76-83.
  • Sondi I, Salopek-Sondi B. Silver Nanoparticles as Antimicrobial Agent: a Case Study on E.coli As a Model For Gram-Negative Bacteria, Colloid Interface Sci., Cilt. 275, No. 1, 2004, s.177-182.
  • Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and Silver Resistance, Accumulation, and Toxicity in Microorganisms, Plasmid-Determined Metal Resistance: A Collection of Reviews, Cilt. 27, No. 1, 1992, s.72-79.
  • Zhao G, Stevens Jr SE. Multiple Parameters for The Comprehensive Evaluation of the Susceptibility of Escherichia coli to The Silver Ion, Biometals, Cilt. 11, No. 1, 1998, s.27- 32.
  • Tomatsu I, Peng K, Kros A. Photoresponsive Hydrogels for Biomedical Applications, Adv. Drug Deliv. Rev., Cilt. 63, 2011, s.1257-1266.
  • Das N. Preparation Methods and Properties of Hydrogel: A Review, Int. J. Pharm. Pharm. Sci., Cilt. 5, No. 3, 2013, s.112-117.
  • Kalshetti PP, Rajendra VB, Dixit DN, Parekh PP. Hydrogels as a Drug Delivery System and Applications: A Review, Int. J. Pharm. Sci., Cilt. 4, No. 1, 2012, s.1-7.
  • Yu HJ, Xu XY, Chen XS, Lu TC, Zhang PB, Jing XB. Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver Nanoparticles, J. Appl. Polym. Sci., Cilt. 103, 2007, s.125-133.
  • Zan XJ, Kozlov M, Mc Carthy TJ, Su ZH. Covalently Attached, Silver-Doped Poly(vinyl alcohol) Hydrogel Films on Poly(L-lactic acid), Biomacromolecules, Cilt. 11, 2010, s.1082-1088.
  • Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. A Versatile Strategy to Fabricate Hydrogel-Silver Nanocomposites and Investigation of Their Antimicrobial Activity, J. Colloid Interface Sci., Cilt. 315, 2007, s.389-395.
  • Singh R, Singh DJ. Radiation Synthesis of PVP/Alginate Hydrogel Containing Nanosilver as Wound Dressing, J. Mater. Sci. Mater. M., Cilt. 23, No. 11, 2012, s.2649– 2658.
  • Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM. First Successful Design of Semi-IPN Hydrogel-Silver Nanocomposites: a Facile Approach for Antibacterial Application, J. Colloid Interface Sci., Cilt. 318, No. 2, 2008, s.217-224.
  • Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM. Controlled Silver Nanoparticles Synthesis in Semi-Hydrogel Networks of poly(acrylamide) and Carbohydrates: a Rational Methodology for Antibacterial Application, Carbohyd. Polym., Cilt. 75,2009, s.463-471.
  • Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM. Hydrogel-Silver Nanoparticle Composites: A New Generation of Antimicrobials, J. Appl. Polym. Sci., Cilt. 115, 2010, s.1199-1207.
  • Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM. Controlling of Silver Nanoparticles Structure by Hydrogel Networks, J. Colloid Interface Sci., Cilt. 342, 2010, s.73-82.
  • Pal S, Tak YK, Song MS. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, Appl. Environ. Microbiol., Cilt. 73, 2007, s.1712-1720.
  • Gils PS, Ray D, Sahooa PK. Designing of Silver Nanoparticles in Gum Arabic Based Semi-IPN Hydrogel, Int. J. Biol. Macromol., Cilt. 46, 2010, s.237-244.
  • Reddy PR, Varaprasad K, Reddy NN, Raju KM, Reddy NSJ. Fabrication of Au and Ag Bi-Metallic Nanocomposite for Antimicrobial Applications, J. Appl. Polym. Sci., Cilt. 125, 2012, s.1357-1362.
  • Baram N, Starosvetsky D, Starovetsky J, Epshtein M, Armon R, Ein-Eli Y. Photocatalytic Inactivation of Microorganisms Using Nanotubular TiO2, Appl. Catal. B:Environment., Cilt. 101, 2011, s.212-219.
  • Chen Y, Yan L, Yuan T, Zhang Q, Fan H. Asymmetric Polyurethane Membrane with in situ-Generated Nano-TiO2 as Wound Dressing, J. Appl. Polym. Sci., Cilt. 119, 2011, s.1532–1541.
  • Diaz-Visurraga J, Melendrez MF, Garcia A, Paulraj M, Cardenas G. Semitransparent Chitosan-TiO2 Nanotubes Composite Film for Food Package Applications, Journal of Applied Polymer Science, 1Cilt. 16, 2010, s.3503-3515.
  • He L, Liu Y, Mustapha A, Lin M. Antifungal Activity of Zinc Oxide Nanoparticles Against Botrytis Cinerea and Penicillium Expansum, Microbiol. Res., Cilt. 166, 2011, s.207-215.
  • Fang X, Yu R, Li B, Somasundaran P, Chandran K. Stresses Exerted by ZnO, CeO2 and Anastase TiO2 Nanoparticles on the Nitrosomas Europaea, J. Colloid Interface Sci., Cilt. 348, 2010, s.329-334.
  • Schwegmann H, Feitz AJ, Frimmel FH. Influence of the Zeta Potential on the Sorption and Toxicity of Iron Oxide Nanoparticles on S.cerevisiae and E.coli, J. Colloid Interface Sci., Cilt. 347, 2010, s.43-48.
  • Akhavan O. Lasting Antibacterial Activities of Ag-TiO2/Ag/a-TiO2 Nanocomposite Thin Film Photocatalysts Under Solar Lights Irradiation, J. Colloid Interface Sci., Cilt. 336, 2009, s.117-124.
  • Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V. Cu- Doped TiO2 Nanoparticles for Photocatalytic Disinfection of Bacteria under Visible Light, J. Colloid Interface Sci., Cilt. 352, 2010, s.68-74.
  • Pişkin S. Palantöken A, Yılmaz SM. Antimicrobial Activity of Synthesized TiO2 Nanoparticles, International Conference on Emerging Trends in Engineering and Technology (ICETET'2013), Phuket, Tayland, Aralık, 2013, s.91-94.
  • Bilgehan H. Klinik Mikrobiyoloji, Barış Yayınları, 2000.
  • Herigstad B, Hamilton M, Heersink J. How to Optimize the Drop Plate Methods for Enumerating Bacteria, J. Microbiol. Meth., Cilt. 44, No. 2, 2001, s.121-129.
  • Özeroglu C, Birdal A. Swelling Properties of Acrylamide-N,N′-methylenebis (acrylamide) Hydrogels Synthesized by Using Meso-2,3-dimercaptosuccinic acid-cerium (IV) Redox Couple, Express Polymer Letters, Cilt. 3, No. 3, 2009, s.168–176.
  • Magalhães ASG, Neto MPA, Bezerra MN vd. Application of FTIR in the Determination of Acrylate Content in Poly (sodium acrylate-co-acrylamide) Superabsorbent Hydrogels, Quim. Nova, Cilt. 35, No. 7, 2012, s.1464-1467.
  • Haijun Y, Xiaoyi X, Xuesi C, Tiancheng L, Peibiao Z, Xiabin J. Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver Nanoparticles, J. Appl. Polym. Sci., Cilt. 103, 2007, s.125–133.
  • Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM. Controlled silver nanoparticles synthesis in semi-hydrogel Networks of poly (acrylamide) and carbohydrates: A rational methodology for antibacterial application, Carbohyd. Polym., Cilt. 75, 2009, s.463-471.
  • Thomas V., Yallapu MM, Sreedhar B, Bajpai SK. A Versatile Strategy to Fabricate Hydrogel–Silver Nanocomposites and Investigation of their Antimicrobial Activity, J. Colloid Interface Sci., Cilt. 315, 2007, s.389-395.
  • Agnihotri S., Mukherji S., Mukherji S. Antimicrobial Chitosan–PVA Hydrogel as a Nanoreactor and Immobilizing Matrix for Silver Nanoparticles, Appl. Nanosci., Cilt. 2, 2012, s.179–188.
  • Haijun Y, Xiaoyi X, Xuesi C, Tiancheng L, Peibiao Z, Xiabin J. Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver Nanoparticles, J. Appl. Polym. Sci., Cilt. 103, 2007, s.125–133.
  • Del Curto B, Brunella MF, Giordano C vd. Decreased Bacterial Adhesion to Surface- Treated Titanium, Int. J. Artif. Organs., Cilt. 28, No. 7, 2005, 718-730.
  • Miao L, Tanemura S., Kondo Y, Iwata M, Toh S, Kaneko K. Microstructure and Bactericidal Ağabeylity of Photocatalytic TiO2 Thin Films Prepared by rf Helicon Magnetron Sputtering, Appl. Surf. Sci., Cilt. 238, 2004, 125-131.
  • Lee SW, Park YS, Cho YK. Significantly Enhanced Antibacterial Activity of TiO2 Nanofibers with Hierarchical Nanostructures and Controlled Crystallinity, Analyst, Cilt. 140, 2015.
  • Nel A, Xia T, Madler L, Li N. Toxic Potential of Materials at the Nanolevel, Science, Cilt. 311, 2006, s.622–627.

INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES

Yıl 2016, Cilt: 18 Sayı: 53, 224 - 238, 01.05.2016

Öz

Bu çalışmada, antibakteriyel aktivitelerini araştırmak için sentezlenmiş TiO2, ticari TiO2 (21 nm), TiO2 (<100 nm), Ag (<100 nm) ve ZnO (<50 nm) nanopartiküllerini içeren hidrojeller hazırlanmıştır. Metal ve metaloksit nanopartikülleri içeren hidrojellerin karakterizasyonları Termogravimetri (TGA) ve Fourier Dönüşümlü Infrared Spektroskopisi (FTIR) analizleri gerçekleştirilmiştir. Bu hidrojellerin, Escherichia coli (E. coli) ve Staphylococcus aureus (S. aureus)’a karşı antibakteriyel aktiviteleri airborne testi ve modifiye edilmiş Kirby Bauer disk difüzyon metotları ile ölçülmüştür. Sonuç olarak, sentezlenmiş TiO2, ticari Ag (<100 nm) ve ZnO (<50 nm) nanopartiküllerini içeren hidrojellerin antibakteriyel aktivitesinin varlığı gösterilmiştir

Kaynakça

  • Morones JR, Elechiguerra JL, Camacho A vd. The Bactericidal Effect of Silver Nanoparticles, Nanotechnology, Cilt. 16, 2005, s.2346–2353.
  • Suri SS, Fenniri H, Singh B. Nanotechnology-Based Drug Delivery Systems, J. Occup. Med. Toxicol., Cilt. 2, No. 16, 2007.
  • Stoimenov PK, Klinger RL, Marchin GL. Metaloxide Nanoparticles as Bactericidal Agents, Langmuir, Cilt. 18, No. 17, 2002, s.6679-6686,.
  • Ravikumar S, Gokulakrishnan R, Selvanathan K vd. Antibacterial Activity of Metal Oxide Nanoparticles Against Ophthalmic Pathogens, Int. J. Pharm. Res. Dev., Cilt. 3, No. 5, 2011, s.122-127.
  • Rajendra R, Balakumar C, Ahammed HAM vd. Use of Zinc Oxide Nanoparticles for Production of Antimicrobial Textiles, Int. J. Eng. Sci. Tech., Cilt. 2, No. 1, 2010, s.202- 208.
  • Padmavathy N, Vijayaraghavan R. Enhanced Bioactivity of ZnO Nanoparticles an Antimicrobial Study, Sci. Tech. Adv. Mater, Cilt. 9, 2008.
  • Hosseinkhani P, Zand AM, Imani S vd. Determining the Antibacterial Effect of ZnO Nanoparticle Against the Pathogenic Bacterium, Shigella dysenteriae (type 1), Int. J. Nano. Dim., Cilt. 1, No. 4, 2011, s.279-285.
  • Sunita J, Suresh G, Madhav N vd. Copper Oxide Nanoparticles: Synthesis, Characterization and Their Antibacterial Activity, J. Clust. Sci., Cilt. 22, No. 2, 2011, s.121-129.
  • Kiss B, Biro T, Czifra G vd. Investigation of Micronized Titanium Dioxide Penetration in Human Skin Xenografts and its Effect on Cellular Functions of Human Skin-Derived Cells, Exp. Dermatol., Cilt. 17, 2008, s.659-667.
  • Erem DA. Nanokompozit Yapılı Tekstillerin Geliştirilmesi ve Antimikrobiyal Özellik Kazandırılması, Doktora Tezi, İstanbul: İstanbul Teknik Üniversitesi, Tekstil Mühendisliği, 2012.
  • Abamor EŞ. Gümüş (Ag) ve Titanyum Dioksit (TiO2) Nanopartiküllerinin Kütanöz Leishmaniasis Etkeni L.tropica Parazitleri Üzerindeki Antileishmanial Etkilerinin İncelenmesi, Yüksek Lisans Tezi, İstanbul: Yıldız Teknik Üniversitesi, Biyomühendislik, 2010.
  • Carmona D, Lalueza P, Balas F, Arruebo M, Santamaría J. Mesoporous Silica Loaded with Peracetic Acid and Silver Nanoparticles as a Dual-Effect, Highly Efficient Bactericidal Agent, Micro. Meso. Mater., Cilt. 161, 2012, s.84-90.
  • Landry BK, Nadworny PL, Omotoso OE, Maham Y, Burrell JC, Burrell RE. The Kinetics of Thermal Instability in Nanocrystalline Silver and the Effect of Heat Treatment on The Antibacterial Activity of Nanocrystalline Silver Dressings, Biomaterials, Cilt. 30, No. 36, 2009, s.6929-6939.
  • Raffi M, Hussain F, Bhatti T, Akhter JI, Hameed A, Hasan MM. Antibacterial Characterization of Silver Nanoparticles Against E.coli ATCC-15224, J. Mater. Sci. Technol., Cilt. 24, No. 2, 2008, s.192-196.
  • Rai M, Yadav A, Gade A. Silver Nanoparticles as a New Generation of Antimicrobials, Biotech. Adv., Cilt. 27, No. 1, 2009, s.76-83.
  • Sondi I, Salopek-Sondi B. Silver Nanoparticles as Antimicrobial Agent: a Case Study on E.coli As a Model For Gram-Negative Bacteria, Colloid Interface Sci., Cilt. 275, No. 1, 2004, s.177-182.
  • Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and Silver Resistance, Accumulation, and Toxicity in Microorganisms, Plasmid-Determined Metal Resistance: A Collection of Reviews, Cilt. 27, No. 1, 1992, s.72-79.
  • Zhao G, Stevens Jr SE. Multiple Parameters for The Comprehensive Evaluation of the Susceptibility of Escherichia coli to The Silver Ion, Biometals, Cilt. 11, No. 1, 1998, s.27- 32.
  • Tomatsu I, Peng K, Kros A. Photoresponsive Hydrogels for Biomedical Applications, Adv. Drug Deliv. Rev., Cilt. 63, 2011, s.1257-1266.
  • Das N. Preparation Methods and Properties of Hydrogel: A Review, Int. J. Pharm. Pharm. Sci., Cilt. 5, No. 3, 2013, s.112-117.
  • Kalshetti PP, Rajendra VB, Dixit DN, Parekh PP. Hydrogels as a Drug Delivery System and Applications: A Review, Int. J. Pharm. Sci., Cilt. 4, No. 1, 2012, s.1-7.
  • Yu HJ, Xu XY, Chen XS, Lu TC, Zhang PB, Jing XB. Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver Nanoparticles, J. Appl. Polym. Sci., Cilt. 103, 2007, s.125-133.
  • Zan XJ, Kozlov M, Mc Carthy TJ, Su ZH. Covalently Attached, Silver-Doped Poly(vinyl alcohol) Hydrogel Films on Poly(L-lactic acid), Biomacromolecules, Cilt. 11, 2010, s.1082-1088.
  • Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. A Versatile Strategy to Fabricate Hydrogel-Silver Nanocomposites and Investigation of Their Antimicrobial Activity, J. Colloid Interface Sci., Cilt. 315, 2007, s.389-395.
  • Singh R, Singh DJ. Radiation Synthesis of PVP/Alginate Hydrogel Containing Nanosilver as Wound Dressing, J. Mater. Sci. Mater. M., Cilt. 23, No. 11, 2012, s.2649– 2658.
  • Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM. First Successful Design of Semi-IPN Hydrogel-Silver Nanocomposites: a Facile Approach for Antibacterial Application, J. Colloid Interface Sci., Cilt. 318, No. 2, 2008, s.217-224.
  • Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM. Controlled Silver Nanoparticles Synthesis in Semi-Hydrogel Networks of poly(acrylamide) and Carbohydrates: a Rational Methodology for Antibacterial Application, Carbohyd. Polym., Cilt. 75,2009, s.463-471.
  • Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM. Hydrogel-Silver Nanoparticle Composites: A New Generation of Antimicrobials, J. Appl. Polym. Sci., Cilt. 115, 2010, s.1199-1207.
  • Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM. Controlling of Silver Nanoparticles Structure by Hydrogel Networks, J. Colloid Interface Sci., Cilt. 342, 2010, s.73-82.
  • Pal S, Tak YK, Song MS. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, Appl. Environ. Microbiol., Cilt. 73, 2007, s.1712-1720.
  • Gils PS, Ray D, Sahooa PK. Designing of Silver Nanoparticles in Gum Arabic Based Semi-IPN Hydrogel, Int. J. Biol. Macromol., Cilt. 46, 2010, s.237-244.
  • Reddy PR, Varaprasad K, Reddy NN, Raju KM, Reddy NSJ. Fabrication of Au and Ag Bi-Metallic Nanocomposite for Antimicrobial Applications, J. Appl. Polym. Sci., Cilt. 125, 2012, s.1357-1362.
  • Baram N, Starosvetsky D, Starovetsky J, Epshtein M, Armon R, Ein-Eli Y. Photocatalytic Inactivation of Microorganisms Using Nanotubular TiO2, Appl. Catal. B:Environment., Cilt. 101, 2011, s.212-219.
  • Chen Y, Yan L, Yuan T, Zhang Q, Fan H. Asymmetric Polyurethane Membrane with in situ-Generated Nano-TiO2 as Wound Dressing, J. Appl. Polym. Sci., Cilt. 119, 2011, s.1532–1541.
  • Diaz-Visurraga J, Melendrez MF, Garcia A, Paulraj M, Cardenas G. Semitransparent Chitosan-TiO2 Nanotubes Composite Film for Food Package Applications, Journal of Applied Polymer Science, 1Cilt. 16, 2010, s.3503-3515.
  • He L, Liu Y, Mustapha A, Lin M. Antifungal Activity of Zinc Oxide Nanoparticles Against Botrytis Cinerea and Penicillium Expansum, Microbiol. Res., Cilt. 166, 2011, s.207-215.
  • Fang X, Yu R, Li B, Somasundaran P, Chandran K. Stresses Exerted by ZnO, CeO2 and Anastase TiO2 Nanoparticles on the Nitrosomas Europaea, J. Colloid Interface Sci., Cilt. 348, 2010, s.329-334.
  • Schwegmann H, Feitz AJ, Frimmel FH. Influence of the Zeta Potential on the Sorption and Toxicity of Iron Oxide Nanoparticles on S.cerevisiae and E.coli, J. Colloid Interface Sci., Cilt. 347, 2010, s.43-48.
  • Akhavan O. Lasting Antibacterial Activities of Ag-TiO2/Ag/a-TiO2 Nanocomposite Thin Film Photocatalysts Under Solar Lights Irradiation, J. Colloid Interface Sci., Cilt. 336, 2009, s.117-124.
  • Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V. Cu- Doped TiO2 Nanoparticles for Photocatalytic Disinfection of Bacteria under Visible Light, J. Colloid Interface Sci., Cilt. 352, 2010, s.68-74.
  • Pişkin S. Palantöken A, Yılmaz SM. Antimicrobial Activity of Synthesized TiO2 Nanoparticles, International Conference on Emerging Trends in Engineering and Technology (ICETET'2013), Phuket, Tayland, Aralık, 2013, s.91-94.
  • Bilgehan H. Klinik Mikrobiyoloji, Barış Yayınları, 2000.
  • Herigstad B, Hamilton M, Heersink J. How to Optimize the Drop Plate Methods for Enumerating Bacteria, J. Microbiol. Meth., Cilt. 44, No. 2, 2001, s.121-129.
  • Özeroglu C, Birdal A. Swelling Properties of Acrylamide-N,N′-methylenebis (acrylamide) Hydrogels Synthesized by Using Meso-2,3-dimercaptosuccinic acid-cerium (IV) Redox Couple, Express Polymer Letters, Cilt. 3, No. 3, 2009, s.168–176.
  • Magalhães ASG, Neto MPA, Bezerra MN vd. Application of FTIR in the Determination of Acrylate Content in Poly (sodium acrylate-co-acrylamide) Superabsorbent Hydrogels, Quim. Nova, Cilt. 35, No. 7, 2012, s.1464-1467.
  • Haijun Y, Xiaoyi X, Xuesi C, Tiancheng L, Peibiao Z, Xiabin J. Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver Nanoparticles, J. Appl. Polym. Sci., Cilt. 103, 2007, s.125–133.
  • Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM. Controlled silver nanoparticles synthesis in semi-hydrogel Networks of poly (acrylamide) and carbohydrates: A rational methodology for antibacterial application, Carbohyd. Polym., Cilt. 75, 2009, s.463-471.
  • Thomas V., Yallapu MM, Sreedhar B, Bajpai SK. A Versatile Strategy to Fabricate Hydrogel–Silver Nanocomposites and Investigation of their Antimicrobial Activity, J. Colloid Interface Sci., Cilt. 315, 2007, s.389-395.
  • Agnihotri S., Mukherji S., Mukherji S. Antimicrobial Chitosan–PVA Hydrogel as a Nanoreactor and Immobilizing Matrix for Silver Nanoparticles, Appl. Nanosci., Cilt. 2, 2012, s.179–188.
  • Haijun Y, Xiaoyi X, Xuesi C, Tiancheng L, Peibiao Z, Xiabin J. Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver Nanoparticles, J. Appl. Polym. Sci., Cilt. 103, 2007, s.125–133.
  • Del Curto B, Brunella MF, Giordano C vd. Decreased Bacterial Adhesion to Surface- Treated Titanium, Int. J. Artif. Organs., Cilt. 28, No. 7, 2005, 718-730.
  • Miao L, Tanemura S., Kondo Y, Iwata M, Toh S, Kaneko K. Microstructure and Bactericidal Ağabeylity of Photocatalytic TiO2 Thin Films Prepared by rf Helicon Magnetron Sputtering, Appl. Surf. Sci., Cilt. 238, 2004, 125-131.
  • Lee SW, Park YS, Cho YK. Significantly Enhanced Antibacterial Activity of TiO2 Nanofibers with Hierarchical Nanostructures and Controlled Crystallinity, Analyst, Cilt. 140, 2015.
  • Nel A, Xia T, Madler L, Li N. Toxic Potential of Materials at the Nanolevel, Science, Cilt. 311, 2006, s.622–627.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA42GR27FP
Bölüm Araştırma Makalesi
Yazarlar

Arzu Palantöken Bu kişi benim

Müge Sari Yılmaz Bu kişi benim

Melda Altikatoğlu Yapaöz Bu kişi benim

Sabriye Pişkin Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 18 Sayı: 53

Kaynak Göster

APA Palantöken, A., Yılmaz, M. S., Yapaöz, M. A., Pişkin, S. (2016). INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(53), 224-238.
AMA Palantöken A, Yılmaz MS, Yapaöz MA, Pişkin S. INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES. DEUFMD. Mayıs 2016;18(53):224-238.
Chicago Palantöken, Arzu, Müge Sari Yılmaz, Melda Altikatoğlu Yapaöz, ve Sabriye Pişkin. “INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, sy. 53 (Mayıs 2016): 224-38.
EndNote Palantöken A, Yılmaz MS, Yapaöz MA, Pişkin S (01 Mayıs 2016) INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 53 224–238.
IEEE A. Palantöken, M. S. Yılmaz, M. A. Yapaöz, ve S. Pişkin, “INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES”, DEUFMD, c. 18, sy. 53, ss. 224–238, 2016.
ISNAD Palantöken, Arzu vd. “INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/53 (Mayıs 2016), 224-238.
JAMA Palantöken A, Yılmaz MS, Yapaöz MA, Pişkin S. INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES. DEUFMD. 2016;18:224–238.
MLA Palantöken, Arzu vd. “INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 18, sy. 53, 2016, ss. 224-38.
Vancouver Palantöken A, Yılmaz MS, Yapaöz MA, Pişkin S. INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF HYDROGELS CONTAINING METAL AND METALOXIDE NANOPARTICLES. DEUFMD. 2016;18(53):224-38.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.