BibTex RIS Kaynak Göster

HYDROGEN PRODUCTION THROUGH ARTIFICIAL PHOTOSYNTHESIS WITH CHEMICALLY PRECIPITATED RARE EARTH DOPED TITANIA POWDERS

Yıl 2015, Cilt: 17 Sayı: 50, 54 - 67, 01.05.2015

Öz

In this study, rare earth (RE) doped/undoped TiO2 powders were prepared by chemical precipitation/co-precipitation method and used in photocatalytic hydrogen production through artificial photosynthesis. Relatively high hydrogen production rates were obtained at low heat treatment temparatures due to the high surface areas. RE doped TiO2 powders heat treated at 700 oC produced more hydrogen per unit area due to their higher surface reactivity compared to all the other pure TiO2 powders. Properties of the doped powders like favorable anatase-rutile ratio and high light absorption capacity enhanced the photocatalytic activity by several folds by a relatively low RE doping level of 0.1%

Kaynakça

  • [1] Fusijhima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, Cilt. 238, 1972, s.37-38.
  • [2] Zaleska A. Doped-TiO2: A Review, Recent Patents on Engineering, Cilt. 2, 2008, s.157- 164.
  • [3] Magesh G, Viswanathan B, Viswanath RP, Varadarajan TK. Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue, Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, Cilt. 48, 2009, s.480-488.
  • [4] Dugandžić IM, Jovanović DJ, Mančić LT, Zheng N, Ahrenkiel SP, Milošević OB, Šaponjić ZV, Nedeljković JM. Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption, Journal of Nanoparticle Research, Cilt. 14:1147, 2012, s.1-11.
  • [5] Chiou CH, Juang RS. Photocatalytic degradation of phenol in aqueous solutions by Prdoped TiO2 nanoparticles, Journal of Hazardous Materials, Cilt. 149, 2007, s.1-7.
  • [6] Nassoko D, Li Y-F, Li J-L, Li X, Yu Y. Neodymium-Doped TiO2 with Anatase and Brookite Two Phases: Mechanism for Photocatalytic Activity Enhancement under Visible Light and the Role of Electron, International Journal of Photoenergy, Cilt. 2012, 2012, s.1-10
  • [7] Ningthoujam RS, Sudarsan V, Vatsa RK, Kadam RM, Jagannath, Gupta A. Photoluminescence studies on Eu doped TiO2 nanoparticles, Journal of Alloys and Compounds, Cilt. 486, 2009, s.864-870.
  • [8] Setiawati E, Kawano K, Tsuboi T, Seo HJ. Studies on Thermal Migration of Eu Ion Doped into TiO2 Nanoparticles, Japanese Journal of Applied Physics, Cilt. 47, 2008, s.4651-4657.
  • [9] Shah SI, Li W, Huang CP, Jung O, Ni C. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles, Proceedings of the National Academy of Sciences U S A, Cilt. 99 Suppl 2, 2002, s.6482-6486.
  • [10] Wang C, Ao Y, Wang P, Hou J, Qian J. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres, Applied Surface Science, Cilt. 257, 2010, s.227-231.
  • [11] Luo W, Li R, Liu G, Antonio MR, Cheni X. Evidence of Trivalent Europium Incorporated in Anatase TiO2 Nanocrystals with Multiple Sites, The Journal of Physical Chemistry C, Cilt. 112, 2008, s.10370-10377.
  • [12] Shahmoradi B, Ibrahim IA, Sakamoto N, Ananda S, Somashekar R, Row TN, Byrappa K. Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles, Journal of Environ Science and Health Part A Toxic and Hazardous Substances and Environmental Engineering, Cilt. 45, 2010, s.1248-1255.
  • [13] Antić Ž, Krsmanović RM, Nikolić MG, Marinović-Cincović M, Mitrić M, Polizzi S, Dramićanin MD. Multisite luminescence of rare earth doped TiO2 anatase nanoparticles, Materials Chemistry and Physics, Cilt. 135, 2012, s.1064-1069.
  • [14] Xie Y, Yuan C. Characterization and photocatalysis of Eu3+ –TiO2 sol in the hydrosol reaction system, Materials Research Bulletin, Cilt. 39, 2004, s.533-543.
  • [15] Xie Y, Yuan C. Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation, Applied Surface Science, Cilt. 221, 2004, s.17-24.
  • [16] Xie Y, Yuan C, Li X. Photosensitized and photocatalyzed degradation of azo dye using Lnn+ -TiO2 sol in aqueous solution under visible light irradiation, Materials Science and Engineering: B, Cilt. 117, 2005, s.325-333.
  • [17] Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH. Enhanced photocatalytic activity of Ce3+ –TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control, Applied Catalysis A: General, Cilt. 285, 2005, s.181-189.
  • [18] Tian M, Wang H, Sun D, Peng W, Tao W. Visible light driven nanocrystal anatase TiO2 doped by Ce from sol–gel method and its photoelectrochemical water splitting properties, International Journal of Hydrogen Energy, Cilt. 39, 2014, s.13448-13453.
  • [19] Asal S, Saif M, Hafez H, Mozia S, Heciak A, Moszyński D, Abdel-Mottaleb MSA. Photocatalytic generation of useful hydrocarbons and hydrogen from acetic acid in the presence of lanthanide modified TiO2, International Journal of Hydrogen Energy, Cilt. 36, 2011, s.6529-6537.
  • [20] Huang C, You W, Dang L, Lei Z, Sun Z, Zhang L. Effect of Nd3+ Doping on Photocatalytic Activity of TiO2 Nanoparticles for Water Decomposition to Hydrogen, Chinese Journal of Catalysis, Cilt. 27, 2006, s.203-209.
  • [21] Zhang J, Yan S, Zhao S, Xu Q, Li C. Photocatalytic activity for H2 evolution of TiO2 with tuned surface crystalline phase, Applied Surface Science, Cilt. 280, 2013, s.304-311.
  • [22] Zalas M, Laniecki M. Photocatalytic hydrogen generation over lanthanides-doped titania, Solar Energy Materials and Solar Cells, Cilt. 89, 2005, s.287-296.
  • [23] Puskelova J, Michal R, Caplovicova M, Antoniadou M, Caplovic L, Plesch G, Lianos P. Hydrogen production by photocatalytic ethanol reforming using Eu- and S-doped anatase, Applied Surface Science, Cilt. 305, 2014, s.665-669.
  • [24] Sun Z, Hu Z, Yan Y, Zheng S. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts, Applied Surface Science, Cilt. 314, 2014, s.251-259.
  • [25] Spurr RA, Myers H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Analytical Chemistry, Cilt. 29, 1957, s.760-762.
  • [26] Tripathi AK, Singh MK, Mathpal MC, Mishra SK, Agarwal A. Study of structural transformation in TiO2 nanoparticles and its optical properties, Journal of Alloys and Compounds, Cilt. 549, 2013, s.114-120.
  • [27] López R, Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, Journal of Sol-Gel Science and Technology, Cilt. 61, 2012, s.1-7.
  • [28] Sibu CP, Kumar SR, Mukundan P, Warrier KGK. Structural Modifications and Associated Properties of Lanthanum Oxide Doped Sol−Gel Nanosized Titanium Oxide, Chemistry of Materials, Cilt. 14, 2002, s.2876-2881.
  • [29] Bokare A, Pai M, Athawale AA. Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation, Solar Energy, Cilt. 91, 2013, s.111-119. [30] Kibombo HS, Weber AS, Wu C-M, Raghupathi KR, Koodali RT. Effectively dispersed europium oxide dopants in TiO2 aerogel supports for enhanced photocatalytic pollutant degradation, Journal of Photochemistry and Photobiology A: Chemistry, Cilt. 269, 2013, s.49-58.
  • [31] Xiao Q, Si Z, Zhang J, Xiao C, Tan X. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline, Journal of Hazardous Materials, Cilt. 150, 2008, s.62-67.
  • [32] Saif M, Abdel-Mottaleb MSA. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications, Inorganica Chimica Acta, Cilt. 360, 2007, s.2863-2874.
  • [33] Maurya A, Chauhan P, Mishra SK, Srivastava RK. Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures, Journal of Alloys and Compounds, Cilt. 509, 2011, s.8433-8440.
  • [34] Choudhury B, Choudhury A. Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature, International Nano Letters, Cilt. 3-55, 2013, s.1-9.
  • [35] Galińska A, Walendziewski J. Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents, Energy & Fuels, Cilt. 19, 2005, s.1143-1147

NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ

Yıl 2015, Cilt: 17 Sayı: 50, 54 - 67, 01.05.2015

Öz

Bu çalışmada nadir toprak elementi (NTE) katkılı/katkısız titanya (TiO2) tozları yapay fotosentezle fotokatalitik hidrojen eldesine yönelik uygulamalarda kullanılmak üzere kimyasal çöktürme/birlikte çöktürme yöntemi ile hazırlanmıştır. Düşük ısıl işlem sıcaklıklarında yüksek yüzey alanlarından dolayı yüksek hidrojen üretim miktarları elde edilmiştir. Yüzey aktivitesi bakımından ise 700 oC’de ısıl işlem görmüş katkılı tozların diğer tüm saf tozlara göre birim alan başına daha fazla hidrojen ürettiği saptanmıştır. NTE katkısı ile TiO2’in faz yapısında değişiklikler meydana getirilmiş, optimum anataz-rutil faz oranına sahip ve ışık soğurma kapasitesi yüksek bir nanoyapı elde edilmiştir. Katkıyla tozlarda oluşturulan bu özellikler görece düşük bir miktar olan % 0,1 katkı düzeyinde bile TiO2’in fotokatalitik aktivitesinin birkaç kat artmasını sağlamıştır

Kaynakça

  • [1] Fusijhima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, Cilt. 238, 1972, s.37-38.
  • [2] Zaleska A. Doped-TiO2: A Review, Recent Patents on Engineering, Cilt. 2, 2008, s.157- 164.
  • [3] Magesh G, Viswanathan B, Viswanath RP, Varadarajan TK. Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue, Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, Cilt. 48, 2009, s.480-488.
  • [4] Dugandžić IM, Jovanović DJ, Mančić LT, Zheng N, Ahrenkiel SP, Milošević OB, Šaponjić ZV, Nedeljković JM. Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption, Journal of Nanoparticle Research, Cilt. 14:1147, 2012, s.1-11.
  • [5] Chiou CH, Juang RS. Photocatalytic degradation of phenol in aqueous solutions by Prdoped TiO2 nanoparticles, Journal of Hazardous Materials, Cilt. 149, 2007, s.1-7.
  • [6] Nassoko D, Li Y-F, Li J-L, Li X, Yu Y. Neodymium-Doped TiO2 with Anatase and Brookite Two Phases: Mechanism for Photocatalytic Activity Enhancement under Visible Light and the Role of Electron, International Journal of Photoenergy, Cilt. 2012, 2012, s.1-10
  • [7] Ningthoujam RS, Sudarsan V, Vatsa RK, Kadam RM, Jagannath, Gupta A. Photoluminescence studies on Eu doped TiO2 nanoparticles, Journal of Alloys and Compounds, Cilt. 486, 2009, s.864-870.
  • [8] Setiawati E, Kawano K, Tsuboi T, Seo HJ. Studies on Thermal Migration of Eu Ion Doped into TiO2 Nanoparticles, Japanese Journal of Applied Physics, Cilt. 47, 2008, s.4651-4657.
  • [9] Shah SI, Li W, Huang CP, Jung O, Ni C. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles, Proceedings of the National Academy of Sciences U S A, Cilt. 99 Suppl 2, 2002, s.6482-6486.
  • [10] Wang C, Ao Y, Wang P, Hou J, Qian J. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres, Applied Surface Science, Cilt. 257, 2010, s.227-231.
  • [11] Luo W, Li R, Liu G, Antonio MR, Cheni X. Evidence of Trivalent Europium Incorporated in Anatase TiO2 Nanocrystals with Multiple Sites, The Journal of Physical Chemistry C, Cilt. 112, 2008, s.10370-10377.
  • [12] Shahmoradi B, Ibrahim IA, Sakamoto N, Ananda S, Somashekar R, Row TN, Byrappa K. Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles, Journal of Environ Science and Health Part A Toxic and Hazardous Substances and Environmental Engineering, Cilt. 45, 2010, s.1248-1255.
  • [13] Antić Ž, Krsmanović RM, Nikolić MG, Marinović-Cincović M, Mitrić M, Polizzi S, Dramićanin MD. Multisite luminescence of rare earth doped TiO2 anatase nanoparticles, Materials Chemistry and Physics, Cilt. 135, 2012, s.1064-1069.
  • [14] Xie Y, Yuan C. Characterization and photocatalysis of Eu3+ –TiO2 sol in the hydrosol reaction system, Materials Research Bulletin, Cilt. 39, 2004, s.533-543.
  • [15] Xie Y, Yuan C. Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation, Applied Surface Science, Cilt. 221, 2004, s.17-24.
  • [16] Xie Y, Yuan C, Li X. Photosensitized and photocatalyzed degradation of azo dye using Lnn+ -TiO2 sol in aqueous solution under visible light irradiation, Materials Science and Engineering: B, Cilt. 117, 2005, s.325-333.
  • [17] Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH. Enhanced photocatalytic activity of Ce3+ –TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control, Applied Catalysis A: General, Cilt. 285, 2005, s.181-189.
  • [18] Tian M, Wang H, Sun D, Peng W, Tao W. Visible light driven nanocrystal anatase TiO2 doped by Ce from sol–gel method and its photoelectrochemical water splitting properties, International Journal of Hydrogen Energy, Cilt. 39, 2014, s.13448-13453.
  • [19] Asal S, Saif M, Hafez H, Mozia S, Heciak A, Moszyński D, Abdel-Mottaleb MSA. Photocatalytic generation of useful hydrocarbons and hydrogen from acetic acid in the presence of lanthanide modified TiO2, International Journal of Hydrogen Energy, Cilt. 36, 2011, s.6529-6537.
  • [20] Huang C, You W, Dang L, Lei Z, Sun Z, Zhang L. Effect of Nd3+ Doping on Photocatalytic Activity of TiO2 Nanoparticles for Water Decomposition to Hydrogen, Chinese Journal of Catalysis, Cilt. 27, 2006, s.203-209.
  • [21] Zhang J, Yan S, Zhao S, Xu Q, Li C. Photocatalytic activity for H2 evolution of TiO2 with tuned surface crystalline phase, Applied Surface Science, Cilt. 280, 2013, s.304-311.
  • [22] Zalas M, Laniecki M. Photocatalytic hydrogen generation over lanthanides-doped titania, Solar Energy Materials and Solar Cells, Cilt. 89, 2005, s.287-296.
  • [23] Puskelova J, Michal R, Caplovicova M, Antoniadou M, Caplovic L, Plesch G, Lianos P. Hydrogen production by photocatalytic ethanol reforming using Eu- and S-doped anatase, Applied Surface Science, Cilt. 305, 2014, s.665-669.
  • [24] Sun Z, Hu Z, Yan Y, Zheng S. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts, Applied Surface Science, Cilt. 314, 2014, s.251-259.
  • [25] Spurr RA, Myers H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Analytical Chemistry, Cilt. 29, 1957, s.760-762.
  • [26] Tripathi AK, Singh MK, Mathpal MC, Mishra SK, Agarwal A. Study of structural transformation in TiO2 nanoparticles and its optical properties, Journal of Alloys and Compounds, Cilt. 549, 2013, s.114-120.
  • [27] López R, Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, Journal of Sol-Gel Science and Technology, Cilt. 61, 2012, s.1-7.
  • [28] Sibu CP, Kumar SR, Mukundan P, Warrier KGK. Structural Modifications and Associated Properties of Lanthanum Oxide Doped Sol−Gel Nanosized Titanium Oxide, Chemistry of Materials, Cilt. 14, 2002, s.2876-2881.
  • [29] Bokare A, Pai M, Athawale AA. Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation, Solar Energy, Cilt. 91, 2013, s.111-119. [30] Kibombo HS, Weber AS, Wu C-M, Raghupathi KR, Koodali RT. Effectively dispersed europium oxide dopants in TiO2 aerogel supports for enhanced photocatalytic pollutant degradation, Journal of Photochemistry and Photobiology A: Chemistry, Cilt. 269, 2013, s.49-58.
  • [31] Xiao Q, Si Z, Zhang J, Xiao C, Tan X. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline, Journal of Hazardous Materials, Cilt. 150, 2008, s.62-67.
  • [32] Saif M, Abdel-Mottaleb MSA. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications, Inorganica Chimica Acta, Cilt. 360, 2007, s.2863-2874.
  • [33] Maurya A, Chauhan P, Mishra SK, Srivastava RK. Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures, Journal of Alloys and Compounds, Cilt. 509, 2011, s.8433-8440.
  • [34] Choudhury B, Choudhury A. Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature, International Nano Letters, Cilt. 3-55, 2013, s.1-9.
  • [35] Galińska A, Walendziewski J. Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents, Energy & Fuels, Cilt. 19, 2005, s.1143-1147
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA86HT66GH
Bölüm Araştırma Makalesi
Yazarlar

Hüsnü Arda Yurtsever Bu kişi benim

Muhsin Çiftçioğlu Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 17 Sayı: 50

Kaynak Göster

APA Yurtsever, H. A., & Çiftçioğlu, M. (2015). NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 17(50), 54-67.
AMA Yurtsever HA, Çiftçioğlu M. NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ. DEUFMD. Mayıs 2015;17(50):54-67.
Chicago Yurtsever, Hüsnü Arda, ve Muhsin Çiftçioğlu. “NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 17, sy. 50 (Mayıs 2015): 54-67.
EndNote Yurtsever HA, Çiftçioğlu M (01 Mayıs 2015) NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 17 50 54–67.
IEEE H. A. Yurtsever ve M. Çiftçioğlu, “NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ”, DEUFMD, c. 17, sy. 50, ss. 54–67, 2015.
ISNAD Yurtsever, Hüsnü Arda - Çiftçioğlu, Muhsin. “NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 17/50 (Mayıs 2015), 54-67.
JAMA Yurtsever HA, Çiftçioğlu M. NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ. DEUFMD. 2015;17:54–67.
MLA Yurtsever, Hüsnü Arda ve Muhsin Çiftçioğlu. “NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 17, sy. 50, 2015, ss. 54-67.
Vancouver Yurtsever HA, Çiftçioğlu M. NADİR TOPRAK ELEMENTİ KATKILI KİMYASAL ÇÖKTÜRME TİTANYA TOZLARI İLE YAPAY FOTOSENTEZLE HİDROJEN ÜRETİMİ. DEUFMD. 2015;17(50):54-67.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.