Araştırma Makalesi
BibTex RIS Kaynak Göster

Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi

Yıl 2019, Cilt: 21 Sayı: 61, 149 - 154, 15.01.2019

Öz

Bu çalışmada 4000 Cu atomu basit kübik, cisim merkezli kübik,
yüzey merkezli kübik ve elmas yapının örgü noktalarına yerleştirilerek
Sutton-Chen potansiyel fonksiyonunun bu atomik sistem için ürettiği kararlı
örgü yapısı belirlendi. Kullanılan potansiyel fonksiyonu ifadesinde gömme
enerjisinin ve yük yoğunluğunun hacimle, ikili etkileşme teriminin atomlararası
mesafe ve gömme enerjisinin yük yoğunluğu ile değişimi hesaplandı. Ayrıca model
sisteme Bain zorlanması ve kesme zoru uygulanarak kohesif enerjideki değişimler
belirlendi. Gömülmüş atom metodunun Sutton-Chen türü potansiyel fonksiyonunun
bu atomik sistemin yapısal özelliklerinin belirlenmesi için uygun değerler
üretebildiği görüldü. 

Kaynakça

  • [1] Donato, M.G., Ballone, P. and Giaquinta P.V. 2000. Bain transformation in CuxPd1-x (x~0.5) alloys: An embedded atom study, Phys. Rev. B, 61(1), 24-27. DOI: 10.1103/PhysRevB.61.24
  • [2] Christian, J.W. 1994. Crystallographic theories, interface structure, and transformation mechanism, Metall. and Mater. Trans. A, 25A, 1821-1836.DOI:https://doi.org/10.1007/BF02649031
  • [3] Kazanc, S., Ciftci, Y.O., Colakoglu, K., Ozgen, S. 2006. Temperature and pressure dependence of the some elastic and lattice dynamical properties of copper: a molecular dynamics study, Physica B, 381, 96–102. DOI: https://doi.org/10.1016/j.physb.2005.12.259
  • [4] Dahal, S., Kafle, G., Kaphle, G. C. and Adhikari, N. P. 2014. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach Journal of Institute of Science and Technology, 19(1), 137-144.DOI:http://dx.doi.org/10.3126/jist.v19i1.13839
  • [5] Karavaev, A.V., Dremov, V.V., Ionov, G.V. 2017. Atomistic simulations of dislocation dynamics in d-Pu-Ga alloys, Journal of Nuclear Materials, 496, 85-96. DOI: 10.1016/j.jnucmat.2017.09.005
  • [6] Mittal, R., Gupta, M.K., Chaplot, S.L. 2018. Phonons and anomalous thermal expansion behaviour in crystalline solids, Progress in Materials Science, 92, 360–445. DOI: arXiv:1711.07267
  • [7] Erkoç, Ş. 1997. Emprical many-body potential energy functions used in computer simulationof condensed matter properties, Physics Reports, 278, 79-105. DOI: https://doi.org/10.1016/S0370-1573(96)00031-2
  • [8] Silayi, S., Papaconstantopoulos, D.A., Mehl M.J. 2018. A tight-binding molecular dynamics study of the noble metals Cu, Ag and Au, Computational Materials Science, 146, 278–286.
  • [9] Kazanc, S. 2004. Bakır Bazlı Alaşımlarda Termoelastik Dönüşümlerin Moleküler Dinamik Benzetimi, Fırat Üniversitesi, doktora Tezi, Elazığ
  • [10] Kazanc, S., Özgen, S. 2004. The Changes of barrier energy in fcc-bcc phase transformation by shear stresses, G.U. Journal of Science, 17(2), 35-42.
  • [11] Daw, M.S., Hatcher, R.D. 1985. Application of the embedded atom method to phonons in transition metals, Solid State Comm, 56, 697-699. DOI: https://doi.org/10.1016/0038-1098(85)90781-1
  • [12] Voter, A.F., Chen, S.P. 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al, Mat. Res. Soc. Symp. Proc., 82, 175. DOI: https://doi.org/10.1557/PROC-82-175
  • [13] Finnis, M.W. and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals Philosophical Magazine, 50, 45-55. DOI: https://doi.org/10.1080/01418618408244210
  • [14] Ferrando, R., Tréglia, G. 1995. Tight binding molecular dynamics study of diffusion on Au and Ag(111), Surface Science, 331–333, 920-924. DOI:https://doi.org/10.1016/0039-6028(95)00276-6
  • [15] Sutton, A.P., Chen, J. 1990. Long-range Finnis-Sinclair potentials, J. Philosophical Magazine Letter, 61,139-146.DOI: https://doi.org/10.1080/09500839008206493
  • [16] Khoei,A.R., Abdolhosseini,M.J., Kazemi, M.T., Aghaei A. 2009. An investigation on the validity of Cauchy–Born hypothesis using Sutton-Chen many body potential Computational Materials Science, 44(3), 999-1006. DOI:10.1016/j.commatsci.2008.07.022
  • [17] Xia, W., Chen, S., Sun, Y., Chen, Y. 2012. Geometrical structures of gold clusters on Gupta and Sutton-Chen potentials, Computational and Theoretical Chemistry, 1002, 43-48. DOI:10.1021/ja102145g
  • [18] Kazanc, S. 2006. Molecular dynamics study of pressure effect on glass formation and the crystallization in liquid CuNi alloy, Computational Materials Science, 38(2), 405-409. DOI: https://doi.org/10.1016/j.commatsci.2006.03.008
  • [19] Nishiyama, Z. 1978. Martensitic transformation Academic press, New York.
  • [20] Suziki, T., Shimono, M., Kajiwara, S. 2001. On the mechanism for martensitic transformation from fcc to bcc, Mater. Sci. and Engin. A, 312, 104-108. DOI:https://doi.org/10.1016/S0921-5093(00)01862-1
  • [21] Daw, M.S. and Baskes, M.I. 1983. Semiemprical, Quantum mechanical calculation of hydrogen embrittlement in metals, Physical Rewiev Letter, 50(17),1285-1288.DOI: doi.org/10.1103/PhysRevLett.50.1285
  • [22] Cagin, T., Dereli, G., Uludogan, M. and Tomak, M. 1999. Thermal and mechanical properties of some fcc transition metals, Phys. Rev. B, 59(4), 3468-3472. DOI: doi.org/10.1103/PhysRevB.59.3468
  • [23] Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J. 1984. Universal Features of the equation of state of metals, Physical Rewiev B, 29(6), 2963-2969. DOI:https://doi.org/10.1103/PhysRevB.29.2963
  • [24] Kittel, C. 1986. Introduction to solid state physics, John Wiley&Sons, Inc., New York.
Yıl 2019, Cilt: 21 Sayı: 61, 149 - 154, 15.01.2019

Öz

Kaynakça

  • [1] Donato, M.G., Ballone, P. and Giaquinta P.V. 2000. Bain transformation in CuxPd1-x (x~0.5) alloys: An embedded atom study, Phys. Rev. B, 61(1), 24-27. DOI: 10.1103/PhysRevB.61.24
  • [2] Christian, J.W. 1994. Crystallographic theories, interface structure, and transformation mechanism, Metall. and Mater. Trans. A, 25A, 1821-1836.DOI:https://doi.org/10.1007/BF02649031
  • [3] Kazanc, S., Ciftci, Y.O., Colakoglu, K., Ozgen, S. 2006. Temperature and pressure dependence of the some elastic and lattice dynamical properties of copper: a molecular dynamics study, Physica B, 381, 96–102. DOI: https://doi.org/10.1016/j.physb.2005.12.259
  • [4] Dahal, S., Kafle, G., Kaphle, G. C. and Adhikari, N. P. 2014. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach Journal of Institute of Science and Technology, 19(1), 137-144.DOI:http://dx.doi.org/10.3126/jist.v19i1.13839
  • [5] Karavaev, A.V., Dremov, V.V., Ionov, G.V. 2017. Atomistic simulations of dislocation dynamics in d-Pu-Ga alloys, Journal of Nuclear Materials, 496, 85-96. DOI: 10.1016/j.jnucmat.2017.09.005
  • [6] Mittal, R., Gupta, M.K., Chaplot, S.L. 2018. Phonons and anomalous thermal expansion behaviour in crystalline solids, Progress in Materials Science, 92, 360–445. DOI: arXiv:1711.07267
  • [7] Erkoç, Ş. 1997. Emprical many-body potential energy functions used in computer simulationof condensed matter properties, Physics Reports, 278, 79-105. DOI: https://doi.org/10.1016/S0370-1573(96)00031-2
  • [8] Silayi, S., Papaconstantopoulos, D.A., Mehl M.J. 2018. A tight-binding molecular dynamics study of the noble metals Cu, Ag and Au, Computational Materials Science, 146, 278–286.
  • [9] Kazanc, S. 2004. Bakır Bazlı Alaşımlarda Termoelastik Dönüşümlerin Moleküler Dinamik Benzetimi, Fırat Üniversitesi, doktora Tezi, Elazığ
  • [10] Kazanc, S., Özgen, S. 2004. The Changes of barrier energy in fcc-bcc phase transformation by shear stresses, G.U. Journal of Science, 17(2), 35-42.
  • [11] Daw, M.S., Hatcher, R.D. 1985. Application of the embedded atom method to phonons in transition metals, Solid State Comm, 56, 697-699. DOI: https://doi.org/10.1016/0038-1098(85)90781-1
  • [12] Voter, A.F., Chen, S.P. 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al, Mat. Res. Soc. Symp. Proc., 82, 175. DOI: https://doi.org/10.1557/PROC-82-175
  • [13] Finnis, M.W. and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals Philosophical Magazine, 50, 45-55. DOI: https://doi.org/10.1080/01418618408244210
  • [14] Ferrando, R., Tréglia, G. 1995. Tight binding molecular dynamics study of diffusion on Au and Ag(111), Surface Science, 331–333, 920-924. DOI:https://doi.org/10.1016/0039-6028(95)00276-6
  • [15] Sutton, A.P., Chen, J. 1990. Long-range Finnis-Sinclair potentials, J. Philosophical Magazine Letter, 61,139-146.DOI: https://doi.org/10.1080/09500839008206493
  • [16] Khoei,A.R., Abdolhosseini,M.J., Kazemi, M.T., Aghaei A. 2009. An investigation on the validity of Cauchy–Born hypothesis using Sutton-Chen many body potential Computational Materials Science, 44(3), 999-1006. DOI:10.1016/j.commatsci.2008.07.022
  • [17] Xia, W., Chen, S., Sun, Y., Chen, Y. 2012. Geometrical structures of gold clusters on Gupta and Sutton-Chen potentials, Computational and Theoretical Chemistry, 1002, 43-48. DOI:10.1021/ja102145g
  • [18] Kazanc, S. 2006. Molecular dynamics study of pressure effect on glass formation and the crystallization in liquid CuNi alloy, Computational Materials Science, 38(2), 405-409. DOI: https://doi.org/10.1016/j.commatsci.2006.03.008
  • [19] Nishiyama, Z. 1978. Martensitic transformation Academic press, New York.
  • [20] Suziki, T., Shimono, M., Kajiwara, S. 2001. On the mechanism for martensitic transformation from fcc to bcc, Mater. Sci. and Engin. A, 312, 104-108. DOI:https://doi.org/10.1016/S0921-5093(00)01862-1
  • [21] Daw, M.S. and Baskes, M.I. 1983. Semiemprical, Quantum mechanical calculation of hydrogen embrittlement in metals, Physical Rewiev Letter, 50(17),1285-1288.DOI: doi.org/10.1103/PhysRevLett.50.1285
  • [22] Cagin, T., Dereli, G., Uludogan, M. and Tomak, M. 1999. Thermal and mechanical properties of some fcc transition metals, Phys. Rev. B, 59(4), 3468-3472. DOI: doi.org/10.1103/PhysRevB.59.3468
  • [23] Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J. 1984. Universal Features of the equation of state of metals, Physical Rewiev B, 29(6), 2963-2969. DOI:https://doi.org/10.1103/PhysRevB.29.2963
  • [24] Kittel, C. 1986. Introduction to solid state physics, John Wiley&Sons, Inc., New York.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sefa Kazanç 0000-0002-8896-8571

Yayımlanma Tarihi 15 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 21 Sayı: 61

Kaynak Göster

APA Kazanç, S. (2019). Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(61), 149-154.
AMA Kazanç S. Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi. DEUFMD. Ocak 2019;21(61):149-154.
Chicago Kazanç, Sefa. “Sutton-Chen Potansiyel Fonksiyonu Ile Cu Elementinin Örgü Kararlılığının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, sy. 61 (Ocak 2019): 149-54.
EndNote Kazanç S (01 Ocak 2019) Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 61 149–154.
IEEE S. Kazanç, “Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi”, DEUFMD, c. 21, sy. 61, ss. 149–154, 2019.
ISNAD Kazanç, Sefa. “Sutton-Chen Potansiyel Fonksiyonu Ile Cu Elementinin Örgü Kararlılığının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/61 (Ocak 2019), 149-154.
JAMA Kazanç S. Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi. DEUFMD. 2019;21:149–154.
MLA Kazanç, Sefa. “Sutton-Chen Potansiyel Fonksiyonu Ile Cu Elementinin Örgü Kararlılığının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 21, sy. 61, 2019, ss. 149-54.
Vancouver Kazanç S. Sutton-Chen Potansiyel Fonksiyonu ile Cu Elementinin Örgü Kararlılığının İncelenmesi. DEUFMD. 2019;21(61):149-54.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.