Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication and Characterization of γ-Fe2O3 Doped Three Dimensional Graphene Foam

Yıl 2018, Cilt: 20 Sayı: 60, 743 - 754, 15.09.2018

Öz

Recently,
three-dimensional graphene foams produced by CVD method have drawn significant
attention due to their unique properties in many applications. In particular, their
regularly interconnected structures provide a suitable platform for
accommodating metal oxides, polymers etc. Therefore, these materials emerge as
promising candidates for electrochemical applications. In this study,
hydrothermal method of doping iron oxide nanoparticles on three-dimensional
graphene foam was demonstrated for the first time. After doping the saturation
magnetization value (Ms) of graphene foam was measured as 49,8 emu/g while the
interconnected network structure of graphene foam was preserved. These results
show that it is possible to use these materials for electrochemical
applications.

Kaynakça

  • [1] Novaselov, K.S., Jiang, D., Schedin, F., Booth T.J., Khotkevich,V.V., Morozov, S.V., Geim, A.K. 2005. Two dimensional atomic crystals, PNAS, Cilt. 102, s. 10451-10453. DOI: 10.1073/pnas.0502848102.
  • [2] Allen, M.J., Tung, V.C., Kaner, R.B. 2010. Honeycomb Carbon: A Review of Graphene, Chem. Rev., Cilt. 110, s. 132-135. DOI: 10.1021/cr900070d.
  • [3] Gomez, De Arco L., Zhang ,Y., Schlenker, C.W., Ryu K., Thompson, M.E, Zhou, C. 2010. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano, Cilt. 4, s. 2865–2873. DOI: 10.1021/nn901587x
  • [4] Kim, B.J., Jang, H., Lee, S.K., Hong, B.H., Ahn, J.H., Cho, J.H. 2010. High-performance flexible graphene field effect transistors with ion gel gate dielectrics, Nano letters Cilt. 10 (9), s.3464-3466. DOI: 10.1021/nl101559n
  • [5] Mattevi, C., Kim, H., Chhowalla, M. 2011. A Review of chemical vapor deposition of graphene on copper, Journal of Materials Chemistry, Cilt. 21, s. 3324-3334. DOI: 10.1039/C0JM02126A
  • [6] Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard A.F. 2012, High efficiency graphene solar cells by chemical doping, Nano Lett., Cilt.12, s.6–11. DOI: 10.1021/nl204414u
  • [7] Chen, Z., Ren,W., Gao, L., Li, B., Pei, S., Cheng, H.M. 2011. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, Cilt. 10, s. 424–428. DOI:10.1038/nmat3001
  • [8] Fang, Q., Shen, Y., Chen, B. 2015. Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review, Chemical Engineering Journal, Cilt. 264, s. 753-771. https://DOI.org/10.1016/j.cej.2014.12.001
  • [9] Li, C. ve Shi, G. 2012. Three-dimensional graphene architectures, Nanoscale, Cilt. 4, s. 5549. DOI: 10.1039/C2NR31467C
  • [10] Mao, S., Lu, G., Chen, J. 2015. Three-dimensional graphene-based composite for energy application, Nanoscale, Cilt. 7(16), s. 6924-6943. DOI:10.1039/c4nr06609j
  • [11] Zhang, L. ve Shi, G. 2011. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability, Journal of Physical Chemistry C, Cilt. 115, s.17206-17212. DOI: 10.1021/jp204036a
  • [12] Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., Liu, B. 2011. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources, Journal of Materials Chemistry, Cilt. 21, s. 6494-6497. DOI:10.1039/C1JM10239G
  • [13] Yong, Y.C, Dong, Xi.C, Chan-Park, M. B., Song, H., Chen P. 2012. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells, ACSNano, Cilt. 6(3), s. 2394–2400. DOI: 10.1021/nn204656d
  • [14] Cao, X., Shi, Y., Shi, W, Lu G. , Huang, X. , Yan, Q., Zhang, Q. , Hua, Z. 2011. Preparation of Novel 3D Graphene Networks for Supercapacitor Applications, Small, Cilt. 7(22), s. 3163–3168. DOI: 10.1002/smll.201100990
  • [15] Pettes, M. T., Ji, H., Ruoff, R.S., Shi ,L. 2012. Thermal Transport in Three-Dimensional Foam Architectures of Few- Layer Graphene and Ultrathin Graphite, Nano Lett., Cilt. 12, s. 2959−2964. DOI: 10.1021/nl300662q
  • [16] Lin, H., Xu, S., Wang ,X., Mei, N. 2013. Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam, Nanotechnology, Cilt. 24, s. 415706. DOI: 10.1088/0957-4484/24/41/415706
  • [17] Nguyen, D.D., Tai, N.H., Lee, S.B., Kuo,W.S. 2012. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method, Energy Environ. Sci., Cilt. 5, s. 7908. DOI:10.1039/C2EE21848H
  • [18] Dong, X., Cao, Y., Wang, J., Chan-Park , M.B., Wang , L., Huang, W., Chen, P..2012. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications, RSC Advances, Cilt. 2, s.4364–4369. DOI: 10.1039/C2RA01295B
  • [19] Xue, Y., Yu, D., Da,i L.,Wang, R., Li, D., Roy, A., Lu F., Chen, H., Liu, Y., Qu, J. 2013. Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction, Physical chemistry chemical physics, Cilt. 15, s. 12220-12226. DOI: 10.1039/C3CP51942B
  • [20] Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H.M., Karatkar, N. 2011. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network, Scientific Reports, Cilt.1, s. 1-5. DOI: 10.1038/srep00166
  • [21] Lee, J.S., Ahn, H.J., Yoon, Y.C., Jang, J.H. 2012. Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC, Physical Chemistry Chemical Physics, Cilt. 14, s. 7938-7943. DOI: 10.1039/C2CP40810D
  • [22] Urbanova, V., Magro, M., Gedanken, A., Baratella, D., Vianello, F., Zboril, R. 2014. Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem. Mater. Cilt. 26, s. 6653−6673. DOI: 10.1021/cm500364x
  • [23] Gallo, J., Kamaly, N., Lavdas, I., Stevens, E., Nguyen, Q. D., Wylezinska-Arridge, M., Aboagye, E. O., Long, N. J. 2014. CXCR4−targeted and MMP−responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew. Chem., Int. Ed., Cilt.53. s. 9550-9554. DOI: 10.1002/anie.201405442
  • [24] Guo, Y., Wang, X., Sun, R. 2013. Cellulose-based self-assembled nanoparticles for antitumor drug delivery. J. Controlled Rd Release Cilt. 172, s. 17573-17581. DOI: 10.1021/acsami.5b05038.
  • [25] Laurent S., Forge D., Port M., Roch A., Robic C., Elst Vander E., Muller R.N. 2008. Magnetic iron nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., Cilt. 108, s. 2064-2110. DOI: 10.1021/cr068445e.
  • [26] Shen-Nan S., Chao W., Zan-Zan Z., Yang-Long H., Venkatraman S.S., Zhi-Chuan X. 2014. Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications, Chin. Phy. B., Cilt. 23, s.037503. DOI: 10.1088/16741056/23/3/037503
  • [27] Bang J.H., Suslick K.S. 2010. Application of ultrasound to the synthesis of nanostructures materials. 2010. Adv. Mater., Cilt. 22, s. 1039-1059. DOI: 10.1002/adma.200904093.
  • [28] Ferrari, A. C., 2007. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Communications, Cilt.143(1-2), s. 47-57. https://DOI.org/10.1016/j.ssc.2007.03.052
  • [29] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., 2006. Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, Cilt. 97(18), s. 187401. DOI:10.1103/PhysRevLett.97.187401
  • [30] Ferrari, A. C., and Robertson, J., 2000. Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, Cilt. 61(20), s. 14095. DOI: 10.1103/PhysRevB.61.14095.
  • [31] El Mendili Y., Bardeu J.F., Randrianantoandro N., Gourbil A., Greneche J.M., Mercier A.M., Grasset F.2015. Improvement of Thermal Stability of Maghemite Nanoparticles Coated with Oleic Acid and Oleylamine Molecules: Investigations under Laser Irradiation, The Journal of Physical Chemistry C, Cilt. 119, s. 10662-10668. DOI: 10.1021/acs.jpcc.5b00819
  • [32] Alexander, L., Klug, H.P. 1950. Determination of Crystallite Size with Xray Spectrometer, Journal of Applied Physics, Cilt. 21, s. 137-142. DOI: http://dx.DOI.org/10.1063/1.1699612
  • [33] Liu Z., Tu Z., L, Y., Yang F., Han S., Yang W., Zhang L., Wang G., Xu C., Gao J. 2012.Synthesis of three-dimensional graphene foam from petroleum asphalt by chemical vapor deposition, Mater. Lett., Cilt. 122, s. 285-288. https://DOI.org/10.1016/j.matlet.2014.02.077

γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi ve Karakterizasyonu

Yıl 2018, Cilt: 20 Sayı: 60, 743 - 754, 15.09.2018

Öz

Kimyasal
buhar biriktirme yöntemi ile üretilen üç boyutlu grafen köpükler, eşsiz
özelliklerinden dolayı, son yıllarda pek çok alanda giderek dikkat çekmeye
başlamışlardır. Özellikle; metal oksit, polimer gibi malzemelerle kaplanmaya
uygun olan düzenli ağ yapılarıyla elektrokimyasal uygulamalar için de aday
malzemeler haline gelmişlerdir.  Bu
çalışmada, kimyasal buhar biriktirme yöntemi ile üretilen üç boyutlu grafen
köpüklere ilk kez hidrotermal yöntem kullanılarak γ-Fe2O3
nanoparçacıkları katkılanmıştır. Katkılama işlemi sonucunda köpüklere ait doyum
manyetizasyon değeri (Ms) 49,8 emu/g olarak ölçülmüş, grafen köpüğün ağ
yapısının katkılama işlemi sonucunda da korunduğu görülmüştür. Elde edilen bu
sonuçlar γ-Fe2O3 katkılı grafen köpüklerin
elektrokimyasal uygulamalar için kullanılabileceği sonucunu ortaya çıkarmıştır.

Kaynakça

  • [1] Novaselov, K.S., Jiang, D., Schedin, F., Booth T.J., Khotkevich,V.V., Morozov, S.V., Geim, A.K. 2005. Two dimensional atomic crystals, PNAS, Cilt. 102, s. 10451-10453. DOI: 10.1073/pnas.0502848102.
  • [2] Allen, M.J., Tung, V.C., Kaner, R.B. 2010. Honeycomb Carbon: A Review of Graphene, Chem. Rev., Cilt. 110, s. 132-135. DOI: 10.1021/cr900070d.
  • [3] Gomez, De Arco L., Zhang ,Y., Schlenker, C.W., Ryu K., Thompson, M.E, Zhou, C. 2010. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano, Cilt. 4, s. 2865–2873. DOI: 10.1021/nn901587x
  • [4] Kim, B.J., Jang, H., Lee, S.K., Hong, B.H., Ahn, J.H., Cho, J.H. 2010. High-performance flexible graphene field effect transistors with ion gel gate dielectrics, Nano letters Cilt. 10 (9), s.3464-3466. DOI: 10.1021/nl101559n
  • [5] Mattevi, C., Kim, H., Chhowalla, M. 2011. A Review of chemical vapor deposition of graphene on copper, Journal of Materials Chemistry, Cilt. 21, s. 3324-3334. DOI: 10.1039/C0JM02126A
  • [6] Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard A.F. 2012, High efficiency graphene solar cells by chemical doping, Nano Lett., Cilt.12, s.6–11. DOI: 10.1021/nl204414u
  • [7] Chen, Z., Ren,W., Gao, L., Li, B., Pei, S., Cheng, H.M. 2011. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, Cilt. 10, s. 424–428. DOI:10.1038/nmat3001
  • [8] Fang, Q., Shen, Y., Chen, B. 2015. Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review, Chemical Engineering Journal, Cilt. 264, s. 753-771. https://DOI.org/10.1016/j.cej.2014.12.001
  • [9] Li, C. ve Shi, G. 2012. Three-dimensional graphene architectures, Nanoscale, Cilt. 4, s. 5549. DOI: 10.1039/C2NR31467C
  • [10] Mao, S., Lu, G., Chen, J. 2015. Three-dimensional graphene-based composite for energy application, Nanoscale, Cilt. 7(16), s. 6924-6943. DOI:10.1039/c4nr06609j
  • [11] Zhang, L. ve Shi, G. 2011. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability, Journal of Physical Chemistry C, Cilt. 115, s.17206-17212. DOI: 10.1021/jp204036a
  • [12] Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., Liu, B. 2011. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources, Journal of Materials Chemistry, Cilt. 21, s. 6494-6497. DOI:10.1039/C1JM10239G
  • [13] Yong, Y.C, Dong, Xi.C, Chan-Park, M. B., Song, H., Chen P. 2012. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells, ACSNano, Cilt. 6(3), s. 2394–2400. DOI: 10.1021/nn204656d
  • [14] Cao, X., Shi, Y., Shi, W, Lu G. , Huang, X. , Yan, Q., Zhang, Q. , Hua, Z. 2011. Preparation of Novel 3D Graphene Networks for Supercapacitor Applications, Small, Cilt. 7(22), s. 3163–3168. DOI: 10.1002/smll.201100990
  • [15] Pettes, M. T., Ji, H., Ruoff, R.S., Shi ,L. 2012. Thermal Transport in Three-Dimensional Foam Architectures of Few- Layer Graphene and Ultrathin Graphite, Nano Lett., Cilt. 12, s. 2959−2964. DOI: 10.1021/nl300662q
  • [16] Lin, H., Xu, S., Wang ,X., Mei, N. 2013. Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam, Nanotechnology, Cilt. 24, s. 415706. DOI: 10.1088/0957-4484/24/41/415706
  • [17] Nguyen, D.D., Tai, N.H., Lee, S.B., Kuo,W.S. 2012. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method, Energy Environ. Sci., Cilt. 5, s. 7908. DOI:10.1039/C2EE21848H
  • [18] Dong, X., Cao, Y., Wang, J., Chan-Park , M.B., Wang , L., Huang, W., Chen, P..2012. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications, RSC Advances, Cilt. 2, s.4364–4369. DOI: 10.1039/C2RA01295B
  • [19] Xue, Y., Yu, D., Da,i L.,Wang, R., Li, D., Roy, A., Lu F., Chen, H., Liu, Y., Qu, J. 2013. Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction, Physical chemistry chemical physics, Cilt. 15, s. 12220-12226. DOI: 10.1039/C3CP51942B
  • [20] Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H.M., Karatkar, N. 2011. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network, Scientific Reports, Cilt.1, s. 1-5. DOI: 10.1038/srep00166
  • [21] Lee, J.S., Ahn, H.J., Yoon, Y.C., Jang, J.H. 2012. Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC, Physical Chemistry Chemical Physics, Cilt. 14, s. 7938-7943. DOI: 10.1039/C2CP40810D
  • [22] Urbanova, V., Magro, M., Gedanken, A., Baratella, D., Vianello, F., Zboril, R. 2014. Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem. Mater. Cilt. 26, s. 6653−6673. DOI: 10.1021/cm500364x
  • [23] Gallo, J., Kamaly, N., Lavdas, I., Stevens, E., Nguyen, Q. D., Wylezinska-Arridge, M., Aboagye, E. O., Long, N. J. 2014. CXCR4−targeted and MMP−responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew. Chem., Int. Ed., Cilt.53. s. 9550-9554. DOI: 10.1002/anie.201405442
  • [24] Guo, Y., Wang, X., Sun, R. 2013. Cellulose-based self-assembled nanoparticles for antitumor drug delivery. J. Controlled Rd Release Cilt. 172, s. 17573-17581. DOI: 10.1021/acsami.5b05038.
  • [25] Laurent S., Forge D., Port M., Roch A., Robic C., Elst Vander E., Muller R.N. 2008. Magnetic iron nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., Cilt. 108, s. 2064-2110. DOI: 10.1021/cr068445e.
  • [26] Shen-Nan S., Chao W., Zan-Zan Z., Yang-Long H., Venkatraman S.S., Zhi-Chuan X. 2014. Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications, Chin. Phy. B., Cilt. 23, s.037503. DOI: 10.1088/16741056/23/3/037503
  • [27] Bang J.H., Suslick K.S. 2010. Application of ultrasound to the synthesis of nanostructures materials. 2010. Adv. Mater., Cilt. 22, s. 1039-1059. DOI: 10.1002/adma.200904093.
  • [28] Ferrari, A. C., 2007. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Communications, Cilt.143(1-2), s. 47-57. https://DOI.org/10.1016/j.ssc.2007.03.052
  • [29] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., 2006. Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, Cilt. 97(18), s. 187401. DOI:10.1103/PhysRevLett.97.187401
  • [30] Ferrari, A. C., and Robertson, J., 2000. Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, Cilt. 61(20), s. 14095. DOI: 10.1103/PhysRevB.61.14095.
  • [31] El Mendili Y., Bardeu J.F., Randrianantoandro N., Gourbil A., Greneche J.M., Mercier A.M., Grasset F.2015. Improvement of Thermal Stability of Maghemite Nanoparticles Coated with Oleic Acid and Oleylamine Molecules: Investigations under Laser Irradiation, The Journal of Physical Chemistry C, Cilt. 119, s. 10662-10668. DOI: 10.1021/acs.jpcc.5b00819
  • [32] Alexander, L., Klug, H.P. 1950. Determination of Crystallite Size with Xray Spectrometer, Journal of Applied Physics, Cilt. 21, s. 137-142. DOI: http://dx.DOI.org/10.1063/1.1699612
  • [33] Liu Z., Tu Z., L, Y., Yang F., Han S., Yang W., Zhang L., Wang G., Xu C., Gao J. 2012.Synthesis of three-dimensional graphene foam from petroleum asphalt by chemical vapor deposition, Mater. Lett., Cilt. 122, s. 285-288. https://DOI.org/10.1016/j.matlet.2014.02.077
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sibel Kasap 0000-0002-3856-6937

İsmet İ. Kaya Bu kişi benim 0000-0002-7052-5764

Yayımlanma Tarihi 15 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 60

Kaynak Göster

APA Kasap, S., & Kaya, İ. İ. (2018). γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 20(60), 743-754.
AMA Kasap S, Kaya İİ. γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi ve Karakterizasyonu. DEUFMD. Eylül 2018;20(60):743-754.
Chicago Kasap, Sibel, ve İsmet İ. Kaya. “γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 20, sy. 60 (Eylül 2018): 743-54.
EndNote Kasap S, Kaya İİ (01 Eylül 2018) γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20 60 743–754.
IEEE S. Kasap ve İ. İ. Kaya, “γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi ve Karakterizasyonu”, DEUFMD, c. 20, sy. 60, ss. 743–754, 2018.
ISNAD Kasap, Sibel - Kaya, İsmet İ. “γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20/60 (Eylül 2018), 743-754.
JAMA Kasap S, Kaya İİ. γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi ve Karakterizasyonu. DEUFMD. 2018;20:743–754.
MLA Kasap, Sibel ve İsmet İ. Kaya. “γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 20, sy. 60, 2018, ss. 743-54.
Vancouver Kasap S, Kaya İİ. γ-Fe2O3 Nanoparçacık Katkılı Üç Boyutlu Grafen Köpüklerin Üretimi ve Karakterizasyonu. DEUFMD. 2018;20(60):743-54.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.