Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Dynamic Performance of Piezoelectric Sensors With Different Characteristic

Yıl 2018, Cilt: 20 Sayı: 60, 840 - 851, 15.09.2018

Öz

Nowadays, piezoelectric materials have
been widely used as a sensor or an actuator in engineering applications. The
most commonly used piezoelectric material is lead-zirconate-titanium (PZT)
ceramic. According to the characteristics, piezo ceramics are classified into
two main classes, soft PZTs and hard PZTs, and they are called as PZT-2, PZT-4,
PZT-5A, PZT-5H, PZT-8. In this work, dynamic responses of a piezoelectric
sensor with different characteristics of a smart beam were investigated by
using the finite element method in ANSYS/Workbench program. The smart beam was
composed of an aluminum beam and a PZT sensor and a PZT actuator. Both a single
force to the end point and a voltage to the actuator were applied in the smart
beam in the form of impulse and step inputs. Sensor and displacement signals
were obtained by performing the dynamic analysis. It was observed that the
smart beam has varied dynamic responses via the location and characteristic of
piezoelectric sensor.

Kaynakça

  • [1] Loghmani, A., Danesh, M., Keshmiri, M., Savadi, M. M. 2015. Theoretical and Experimental Study of Active Vibration Control of a Cylindrical Shell Using Piezoelectric Disks, Journal of Low Frequency Noise, Vibration and Active Control, Cilt. 34-3, s. 269-288.
  • [2] Dafang, W., Liang, H., Bing, P., Yuewu, W., Shuang, W. 2014. Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material, Aerospace Science and Technology, Cilt. 37(2014), s. 10-19.
  • [3] Yaman, Y., Çalışkan, T., Nalbantoğlu, V., Prasad, E., Waechter, D. 2002. Active vibration control of a smart beam, 6th CanSmart symposium, Montreal.
  • [4] Manning, W. J., Plummer, A. R., Levesley, M. C. 2000. Vibration control of a flexible beam with integrated actuators and sensors, Smart Materials Structures, Cilt. 9, s. 932–9.
  • [5] Kumar, K. R., Narayanan. S. 2008. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs, Smart Materials Structures, Cilt. 17(2008), 055008. doi:10.1088/0964-726/17/5/055008.
  • [6] Li, F., Lyu, F. 2014. Active vibration control of lattice sandwich beams using the piezoelectric actuator/sensor pairs, Composites: Part B, Cilt. 67(2014), s. 571-578.
  • [7] Zippo, A., Ferrari, G., Amabili, M., Barbieri, M., Pellicano, F. 2015. Active vibration control of a composite sandwich plate, Composite Structures, Cilt. 128(2015), s. 100-114.
  • [8] Malgaca, L. 2010. Integration of Active Vibration Control Methods with Finite Element Models of Smart Laminated Composite Structures. Composite Structures, Cilt. 92(2010), s.1651–1663.
  • [9] Tsushima, N., Su, W. 2017. Flutter suppression for highly flexible wings using passive and active piezoelectric effects, Aerospace Science and Technology, Cilt. 65(2017), s. 78-89.
  • [10] Chopra, I., Sirohi, J. 2013. Smart Structures Theory, Cambridge University Press, New York, USA.
  • [11] Malgaca L., Uyar, M., Yavuz, Ş. 2017. Active vibration suppression of a single-link smart flexible manipulator, International Journal of Natural and Engineering Sciences, Cilt. 11(1), s. 13-19.
  • [12] Vashist, S. K., Chhabra, D. 2014. Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm, Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Systems Cilt. 905720, 9 Mart 2014. doi:0.1117/12.2044904;https://doi.org/10.1117/12.2044904.
  • [13] Ferrari, G., Amabili, M. 2015. Active vibration control of a sandwich plate by non-collocated positive position feedback, Journal of Sound and Vibration, Cilt. 342(2015), s. 44-56.
  • [14] Ihn, J., Chang, F. 2004. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. Validation using riveted joints and repair patches, Smart Materials Structures, Cilt. 13 (2004), s. 621–630. doi: 10.1088/0964-1726/13/3/021.
  • [15] Zhao, X., Gao, H., Zhang, G., Ayhan, B., ChimanKwan, F. Y., Rose, J. L. 2007. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring, Smart Materials Structures, Cilt. 16(2007), s. 1208–1217. doi:10.1088/0964-1726/16/4/032.
  • [16] Cotton, D. P. J., Chappell, P. H., Cranny, A., White, N. M., Beeby, S. B. 2007. A Novel Thick-Film Piezoelectric Slip Sensor for a Prosthetic Hand, IEEE sensors journal, Cilt. 7, no. 5, Mayıs 2007. doi: 10.1109/JSEN.2007.894912.
  • [17] Patil, C. S., Roy, S., Jagtap, K. R. 2017. Damage Detection in Frame Structure Using Piezoelectric Actuator, 5th International Conference of Materials Processing and Characterization (ICMPC 2016), Materials Today: Proceedings, Cilt. 4(2017), s. 687–692.
  • [18] Elshafei, M. A., Alraiess, F. 2013. Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory, Smart Materials and Structures, Cilt. 22(2013), s. 035006 (14pp).
  • [19] Park, I., Lee, U. 2012. Dynamic analysis of smart composite beams by using the frequency-domain spectral element method, Journal of Mechanical Science and Technology, Cilt. 26(8), s. 2511-2521.
  • [20] ANSYS Software, 2016. ANSYS, Inc. Erişim Adresi: http://www.ansys.com (Erişim tarihi: 22.08.2016).
  • [21] ABAQUS Software, 2016. ABAQUS UNIFIED FEA. Erişim Adresi: http://www.3ds.com/products-services/simulia/products/abaqus/ (Erişim Tarihi:22.08.2016).
  • [22] Preumont, A. 2011. Vibration Control of Active Structures: An Introduction, Springer Netherlands.
  • [23] Morgan Company, 2016. Products, Erişim Adresi: http://www.morgantechnicalceramics.com/ (Erişim Tarihi: 22.08.2016)
  • [24] Braunt, I., Coffignal, G., Lene, F. 2001, A methodology for determination of piezoelectric actuator and sensor location on beam structures, Journal of Sound and Vibration, Cilt. 5(2001), s. 861-882. doi:10.1006/jsvi.2000.3448.
  • [25] Yousefi-Koma, A. 1997. Active vibration control of smart structures using piezo elements, PhD Thesis, Carleton University, Ottawa, Ontario.
  • [26] Xu, S. X., Koko, T. S. 2002. Finite element analysis and design of actively controlled piezoelectric smart structures, Finite Element Analysis and Design, Cilt. 40(2004), s. 241–62.

Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması

Yıl 2018, Cilt: 20 Sayı: 60, 840 - 851, 15.09.2018

Öz

Günümüzde
piezoelektrik malzemeler algılayıcı veya uyarıcı olarak mühendislik
uygulamalarında sıklıkla kullanılmaktadır. En yaygın kullanılan piezoelektrik
malzeme kurşun-zirkonyum-titanyum (PZT) 
piezo seramiktir. Piezo seramikler karakteristik özelliklerine göre
yumuşak ve sert olarak iki ana sınıfa ayrılırlar ve PZT-2, PZT-4, PZT-5A,
PZT-5H, PZT-8 olarak isimlendirilirler. Bu çalışmada, akıllı bir kirişte farklı
karakteristikti piezoelektrik algılayıcının dinamik cevapları sonlu elemanlar
yöntemi kullanılarak ANSYS/Workbench programında incelenmiştir. Akıllı kiriş,
alüminyum kiriş ile bir piezoelektrik algılayıcı ve bir piezoelektrik
uyarıcıdan oluşmuştur. Akıllı kirişte hem uç noktasına tekil kuvvet, hem
uyarıcıya voltaj, darbe ve adım girdiler şeklinde uygulanmıştır. Algılayıcı ve
yer değiştirme sinyalleri dinamik analiz yapılarak elde edilmiştir. Akıllı
kirişin piezoelektrik algılayıcı konumu ve karakteristiğine göre farklı dinamik
cevaplar verdiği gözlemlenmiştir.  

Kaynakça

  • [1] Loghmani, A., Danesh, M., Keshmiri, M., Savadi, M. M. 2015. Theoretical and Experimental Study of Active Vibration Control of a Cylindrical Shell Using Piezoelectric Disks, Journal of Low Frequency Noise, Vibration and Active Control, Cilt. 34-3, s. 269-288.
  • [2] Dafang, W., Liang, H., Bing, P., Yuewu, W., Shuang, W. 2014. Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material, Aerospace Science and Technology, Cilt. 37(2014), s. 10-19.
  • [3] Yaman, Y., Çalışkan, T., Nalbantoğlu, V., Prasad, E., Waechter, D. 2002. Active vibration control of a smart beam, 6th CanSmart symposium, Montreal.
  • [4] Manning, W. J., Plummer, A. R., Levesley, M. C. 2000. Vibration control of a flexible beam with integrated actuators and sensors, Smart Materials Structures, Cilt. 9, s. 932–9.
  • [5] Kumar, K. R., Narayanan. S. 2008. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs, Smart Materials Structures, Cilt. 17(2008), 055008. doi:10.1088/0964-726/17/5/055008.
  • [6] Li, F., Lyu, F. 2014. Active vibration control of lattice sandwich beams using the piezoelectric actuator/sensor pairs, Composites: Part B, Cilt. 67(2014), s. 571-578.
  • [7] Zippo, A., Ferrari, G., Amabili, M., Barbieri, M., Pellicano, F. 2015. Active vibration control of a composite sandwich plate, Composite Structures, Cilt. 128(2015), s. 100-114.
  • [8] Malgaca, L. 2010. Integration of Active Vibration Control Methods with Finite Element Models of Smart Laminated Composite Structures. Composite Structures, Cilt. 92(2010), s.1651–1663.
  • [9] Tsushima, N., Su, W. 2017. Flutter suppression for highly flexible wings using passive and active piezoelectric effects, Aerospace Science and Technology, Cilt. 65(2017), s. 78-89.
  • [10] Chopra, I., Sirohi, J. 2013. Smart Structures Theory, Cambridge University Press, New York, USA.
  • [11] Malgaca L., Uyar, M., Yavuz, Ş. 2017. Active vibration suppression of a single-link smart flexible manipulator, International Journal of Natural and Engineering Sciences, Cilt. 11(1), s. 13-19.
  • [12] Vashist, S. K., Chhabra, D. 2014. Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm, Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Systems Cilt. 905720, 9 Mart 2014. doi:0.1117/12.2044904;https://doi.org/10.1117/12.2044904.
  • [13] Ferrari, G., Amabili, M. 2015. Active vibration control of a sandwich plate by non-collocated positive position feedback, Journal of Sound and Vibration, Cilt. 342(2015), s. 44-56.
  • [14] Ihn, J., Chang, F. 2004. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. Validation using riveted joints and repair patches, Smart Materials Structures, Cilt. 13 (2004), s. 621–630. doi: 10.1088/0964-1726/13/3/021.
  • [15] Zhao, X., Gao, H., Zhang, G., Ayhan, B., ChimanKwan, F. Y., Rose, J. L. 2007. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring, Smart Materials Structures, Cilt. 16(2007), s. 1208–1217. doi:10.1088/0964-1726/16/4/032.
  • [16] Cotton, D. P. J., Chappell, P. H., Cranny, A., White, N. M., Beeby, S. B. 2007. A Novel Thick-Film Piezoelectric Slip Sensor for a Prosthetic Hand, IEEE sensors journal, Cilt. 7, no. 5, Mayıs 2007. doi: 10.1109/JSEN.2007.894912.
  • [17] Patil, C. S., Roy, S., Jagtap, K. R. 2017. Damage Detection in Frame Structure Using Piezoelectric Actuator, 5th International Conference of Materials Processing and Characterization (ICMPC 2016), Materials Today: Proceedings, Cilt. 4(2017), s. 687–692.
  • [18] Elshafei, M. A., Alraiess, F. 2013. Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory, Smart Materials and Structures, Cilt. 22(2013), s. 035006 (14pp).
  • [19] Park, I., Lee, U. 2012. Dynamic analysis of smart composite beams by using the frequency-domain spectral element method, Journal of Mechanical Science and Technology, Cilt. 26(8), s. 2511-2521.
  • [20] ANSYS Software, 2016. ANSYS, Inc. Erişim Adresi: http://www.ansys.com (Erişim tarihi: 22.08.2016).
  • [21] ABAQUS Software, 2016. ABAQUS UNIFIED FEA. Erişim Adresi: http://www.3ds.com/products-services/simulia/products/abaqus/ (Erişim Tarihi:22.08.2016).
  • [22] Preumont, A. 2011. Vibration Control of Active Structures: An Introduction, Springer Netherlands.
  • [23] Morgan Company, 2016. Products, Erişim Adresi: http://www.morgantechnicalceramics.com/ (Erişim Tarihi: 22.08.2016)
  • [24] Braunt, I., Coffignal, G., Lene, F. 2001, A methodology for determination of piezoelectric actuator and sensor location on beam structures, Journal of Sound and Vibration, Cilt. 5(2001), s. 861-882. doi:10.1006/jsvi.2000.3448.
  • [25] Yousefi-Koma, A. 1997. Active vibration control of smart structures using piezo elements, PhD Thesis, Carleton University, Ottawa, Ontario.
  • [26] Xu, S. X., Koko, T. S. 2002. Finite element analysis and design of actively controlled piezoelectric smart structures, Finite Element Analysis and Design, Cilt. 40(2004), s. 241–62.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Levent Malgaca 0000-0003-2019-8758

Mehmet Uyar 0000-0003-3511-7682

Yayımlanma Tarihi 15 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 60

Kaynak Göster

APA Malgaca, L., & Uyar, M. (2018). Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 20(60), 840-851.
AMA Malgaca L, Uyar M. Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması. DEUFMD. Eylül 2018;20(60):840-851.
Chicago Malgaca, Levent, ve Mehmet Uyar. “Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 20, sy. 60 (Eylül 2018): 840-51.
EndNote Malgaca L, Uyar M (01 Eylül 2018) Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20 60 840–851.
IEEE L. Malgaca ve M. Uyar, “Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması”, DEUFMD, c. 20, sy. 60, ss. 840–851, 2018.
ISNAD Malgaca, Levent - Uyar, Mehmet. “Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20/60 (Eylül 2018), 840-851.
JAMA Malgaca L, Uyar M. Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması. DEUFMD. 2018;20:840–851.
MLA Malgaca, Levent ve Mehmet Uyar. “Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 20, sy. 60, 2018, ss. 840-51.
Vancouver Malgaca L, Uyar M. Farklı Karakteristikli Piezoelektrik Algılayıcıların Dinamik Performanslarının Karşılaştırılması. DEUFMD. 2018;20(60):840-51.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.