Araştırma Makalesi
BibTex RIS Kaynak Göster

A general scheme to create complex triple helical wire rope model using parametric equations

Yıl 2018, Cilt: 20 Sayı: 60, 905 - 914, 15.09.2018

Öz

Finite Element Analysis of wire ropes made big influence on researchers
last decade. Requirement of an correct 3D wire rope model is the most important
issue during analysis. To accomplish such a good model with error free surface
representation for helical wires are mostly very difficult even sometimes
impossible for some kind of helical shapes. This paper aims to show how to
construct such an complicated wire rope model. For this purpose parametric
mathematical equations of the single, double and triple wire models are
represented. Proposed triple helical wire rope model is constructed by using a
code instead of ready use commercial 3D software for material design. The
constructed model can be adopted to any analysis tool to find numerical
results. 

Kaynakça

  • [1] Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th ed., New York: Dover Publ., First Am. Print. 1944, Chapter XVIII-XIX, 381-426.
  • [2] Timoshenko S (1955) Strength of materials, New York: Van Nostrand, 2:292-299.
  • [3] Green AE, Laws N (1966) A general theory of rods. Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci., 293:(1433):145-155.
  • [4] Costello, G.A. and Sinha S.K. Static Behaviour of Wire Rope, Proceedings ASCE, Journal of Engineering Mechanical Division, 103 (No.EM6), 1011-1022, 1977
  • [5] Costello, G.A. and Miller, R.E. Lay Effect of Wire Rope, Journal of Engineering Mechanical Division, 105 (No.EM4 paper 14753), 597-608, 1979
  • [6] Costello, G.A. and Butson, G.J. A simplified bending theory for wire rope, Journal of the Engineering Mechanical Division, ASCE, 108, (EM2, Proc. Paper 16984), 219-227, 1982
  • [7] Costello, G.A. and Miller, R.E. Static response of reduced rotation rope, Journal of Engineering Mechanical Division, 106 (No.EM4 paper 15612), 623-631, 1980
  • [8] Costello GA (1990) Theory of wire rope, Berl.: Springer.
  • [9] Cochran JE Jr, Fitz-Coy NG, Cutchins MA (1987) Finite element models of wire rope for vibration analysis. NASA Marshall Space Flight Cent., NTRS: 2007-06-26, Number: 87N22748; ID: 19870013315.
  • [10] Chiang YJ (1996) Characterizing simple stranded wire cables under axial loading. Finite Elem. Anal. Des., 24:49-66.
  • [11] Andorfer K (1983) Die Zugkraftverteilung in schwingend beanspruchten geraden Drahtseilen, Diss. Tech. Univ. Graz.
  • [12] Lee WK (1991) An insight into wire rope geometry. Int. J. Solids Struct., 28:(4):471-490.
  • [13] Wang RC, Miscoe AJ, McKewan WM (1998) Model for the Structure of Round-Strand Wire Ropes. U.S. Dep. Health Hum. Serv., Public Health Serv., Cent. Disease Control Prev., Natl. Inst. Occup. Saf. Health, DHHS (NIOSH), Publ. No. 98-148, Rep. Investig. 9644:1-19
  • [14] Erdönmez, C., İmrak, C. E. (2011) A finite element model for independent wire rope core with double helical geometry subjected to axial loads, Sadhana,36(6), pp. 995-1008.
  • [15] Onur, Y.A. (2016) Experimental and theoretical investigation of prestressing steel strand subjected to tensile load, International Journal of Mechanical Sciences, Vol. 118, pp. 91-100.
  • [16] Onur, Y.A., İmrak, C.E., Onur, T.Ö. (2017) Investigation on bending over sheave fatigue life determination of rotation resistant steel wire rope, Experimental Techniques, 41(5), pp. 475-482.
  • [17] Onur, Y.A., İmrak, C.E. (2017) Discard fatigue life of stranded steel wire rope subjected to bending over sheave fatigue, Mechanics & Industry, 18 (2), 223.
  • [18] Stanova, E., Fedorko, G., Fabian, M., Kmet, S., Computer modelling of wire strands and ropes Part I: Theory and computer implementation, Advances in Engineering Software, 42(6):305–315.
  • [19] Stanova, E., Fedorko, G., Fabian, M., Kmet, S., Computer modelling of wire strands and ropes part II: Finite element-based applications, Advances in Engineering Software, 42(6):322-331.

Parametrik denklemleri kullanarak karmaşık üçlü sarmal halat modeli oluşturmak için genel bir şema

Yıl 2018, Cilt: 20 Sayı: 60, 905 - 914, 15.09.2018

Öz

Tel halatlarla ilgili yapılan Sonlu Eleman Analiz çalışmaları
araştırmacılar arasında son on yılda büyük ilgi uyandırmıştır. Analiz
çalışmaları sırasında doğru üç boyutlu tel halat modelleri ihtiyacı en önemli
gerekliliktir. Böyle yüzey hatalarından arındırılmış bazı helisel şekillerin
bir katı modelini oluşturmayı başarmak çoğunlukla çok zor hatta bazı zamanlar
imkansız olmaktadır. Makalenin amacı bu tür karmaşık bir tel halat modelinin
oluşturulmasını göstermeye çalışmaktır. Bu amaçla tekli, ikili ve üçlü tel
halat modellerine ait parametrik matematik denklemler gösterilmiştir. Önerilen
üçlü helisel halat modeli tasarımı hazır üç boyutlu tasarım uygulamaları kullanılmadan,
özgün olarak geliştirilmiş bir kod yardımıyla oluşturulmaktadır. Tasarlanan
model herhangi bir analiz aracına uyumlu hale getirilerek sayısal çözümler elde
edilebilir.

Kaynakça

  • [1] Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th ed., New York: Dover Publ., First Am. Print. 1944, Chapter XVIII-XIX, 381-426.
  • [2] Timoshenko S (1955) Strength of materials, New York: Van Nostrand, 2:292-299.
  • [3] Green AE, Laws N (1966) A general theory of rods. Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci., 293:(1433):145-155.
  • [4] Costello, G.A. and Sinha S.K. Static Behaviour of Wire Rope, Proceedings ASCE, Journal of Engineering Mechanical Division, 103 (No.EM6), 1011-1022, 1977
  • [5] Costello, G.A. and Miller, R.E. Lay Effect of Wire Rope, Journal of Engineering Mechanical Division, 105 (No.EM4 paper 14753), 597-608, 1979
  • [6] Costello, G.A. and Butson, G.J. A simplified bending theory for wire rope, Journal of the Engineering Mechanical Division, ASCE, 108, (EM2, Proc. Paper 16984), 219-227, 1982
  • [7] Costello, G.A. and Miller, R.E. Static response of reduced rotation rope, Journal of Engineering Mechanical Division, 106 (No.EM4 paper 15612), 623-631, 1980
  • [8] Costello GA (1990) Theory of wire rope, Berl.: Springer.
  • [9] Cochran JE Jr, Fitz-Coy NG, Cutchins MA (1987) Finite element models of wire rope for vibration analysis. NASA Marshall Space Flight Cent., NTRS: 2007-06-26, Number: 87N22748; ID: 19870013315.
  • [10] Chiang YJ (1996) Characterizing simple stranded wire cables under axial loading. Finite Elem. Anal. Des., 24:49-66.
  • [11] Andorfer K (1983) Die Zugkraftverteilung in schwingend beanspruchten geraden Drahtseilen, Diss. Tech. Univ. Graz.
  • [12] Lee WK (1991) An insight into wire rope geometry. Int. J. Solids Struct., 28:(4):471-490.
  • [13] Wang RC, Miscoe AJ, McKewan WM (1998) Model for the Structure of Round-Strand Wire Ropes. U.S. Dep. Health Hum. Serv., Public Health Serv., Cent. Disease Control Prev., Natl. Inst. Occup. Saf. Health, DHHS (NIOSH), Publ. No. 98-148, Rep. Investig. 9644:1-19
  • [14] Erdönmez, C., İmrak, C. E. (2011) A finite element model for independent wire rope core with double helical geometry subjected to axial loads, Sadhana,36(6), pp. 995-1008.
  • [15] Onur, Y.A. (2016) Experimental and theoretical investigation of prestressing steel strand subjected to tensile load, International Journal of Mechanical Sciences, Vol. 118, pp. 91-100.
  • [16] Onur, Y.A., İmrak, C.E., Onur, T.Ö. (2017) Investigation on bending over sheave fatigue life determination of rotation resistant steel wire rope, Experimental Techniques, 41(5), pp. 475-482.
  • [17] Onur, Y.A., İmrak, C.E. (2017) Discard fatigue life of stranded steel wire rope subjected to bending over sheave fatigue, Mechanics & Industry, 18 (2), 223.
  • [18] Stanova, E., Fedorko, G., Fabian, M., Kmet, S., Computer modelling of wire strands and ropes Part I: Theory and computer implementation, Advances in Engineering Software, 42(6):305–315.
  • [19] Stanova, E., Fedorko, G., Fabian, M., Kmet, S., Computer modelling of wire strands and ropes part II: Finite element-based applications, Advances in Engineering Software, 42(6):322-331.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cengiz Erdönmez Bu kişi benim 0000-0002-3196-8466

Yayımlanma Tarihi 15 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 60

Kaynak Göster

APA Erdönmez, C. (2018). A general scheme to create complex triple helical wire rope model using parametric equations. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 20(60), 905-914.
AMA Erdönmez C. A general scheme to create complex triple helical wire rope model using parametric equations. DEUFMD. Eylül 2018;20(60):905-914.
Chicago Erdönmez, Cengiz. “A General Scheme to Create Complex Triple Helical Wire Rope Model Using Parametric Equations”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 20, sy. 60 (Eylül 2018): 905-14.
EndNote Erdönmez C (01 Eylül 2018) A general scheme to create complex triple helical wire rope model using parametric equations. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20 60 905–914.
IEEE C. Erdönmez, “A general scheme to create complex triple helical wire rope model using parametric equations”, DEUFMD, c. 20, sy. 60, ss. 905–914, 2018.
ISNAD Erdönmez, Cengiz. “A General Scheme to Create Complex Triple Helical Wire Rope Model Using Parametric Equations”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20/60 (Eylül 2018), 905-914.
JAMA Erdönmez C. A general scheme to create complex triple helical wire rope model using parametric equations. DEUFMD. 2018;20:905–914.
MLA Erdönmez, Cengiz. “A General Scheme to Create Complex Triple Helical Wire Rope Model Using Parametric Equations”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 20, sy. 60, 2018, ss. 905-14.
Vancouver Erdönmez C. A general scheme to create complex triple helical wire rope model using parametric equations. DEUFMD. 2018;20(60):905-14.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.