Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft

Yıl 2019, Cilt: 21 Sayı: 62, 607 - 620, 21.05.2019
https://doi.org/10.21205/deufmd.2019216224

Öz

In this study, alternative biografts used
for orthopedic applications were produced by sol gel method. The effects of
boric acid, MgO and SrBr2 compounds on the morphological structure
and mechanical properties of the produced biografts were investigated. For
these purposes, the morphological effects of biografts were examined by FTIR,
XRD and SEM-EDX analyzes and their mechanical properties were investigated by
hardness and compression tests.



As a result of FTIR and XRD
investigations on all biografts, it was observed that the additive materials
decreased the crystallinity and formed the HA (Hydroxyapatite), β-TCP (Beta
tricalcium phosphate), Ca3 (Si3O9), Ca2H4O9P2
phase structures. In addition, as a result of the SEM-EDX and mechanical tests,
it has been determined that different sizes of grain structure in all biografts
are formed and boric acid, MgO and SrBr2 additives increase the
compressive strength and hardness values.

Kaynakça

  • [1] Liang, W., Rahaman, M. N., Day, D. E., Marion, N. W., Riley G. C., Mao J. J., 2008. Bioactive borate glass scaffold for bone tissue engineering, J. Non-Cryst. Solids, Volume. 354, p.1690–1696.
  • [2] Mariappan, C.R., Yunos, D. M., Boccaccini, A. R., Roling, B., 2009. Bioactivity of electro-thermally poled bioactive silicate glass, Acta Biomater., Volume. 5 [4], p.1274–1283.
  • [3] Ouis, M. A., Abdelghany, A. M., Elbatal, H. A., 2012. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass, Processing and Application of Ceramics, Volume. 6 [3], p.141–149.
  • [4] Hench, L.L., 1991. Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., Volume. 74, p.1487–1510.
  • [5] Deaza, P. N., Guitian, F., Deaza, S., 1994. Bioactivity of Wollastonite Ceramics: In Vitro Evaluation, Scr. Metall. Mater., Volume. 31, p. 1001–1005.
  • [6] Lin, K. L., Zhai, W. Y., Ni, S. Y., Chang, J., Zeng, Y., Qian, W. J., 2005. Study of the Mechanical Property and in vitro Biocompatibility of CaSiO3 Ceramics, Ceram. Int., Volume. 31, p. 323–326.
  • [7] Gou, Z. R., Chang, J., Zhai, W. Y., 2005. Preparation and Characterization of Novel Bioactive Dicalcium Silicate Ceramics, J. Eur. Ceram. Soc., Volume. 25, p. 1507–1514.
  • [8] Wu, C. T., Chang, J., Wang, J. Y., Ni, S. Y., Zhai, W. Y., 2005. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials, Volume. 26, p.925–2931.
  • [9] Wu, C. T., Chang, J., 2006. A novel akermanite bioceramic: preparation and characteristics, J. Biomater. Appl., Volume. 21, p.119–129.
  • [10] Choudhary, R., Koppala, S., Swamiappan, S., 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis, Journal of Asian Ceramic Societies, Volume. 3-2, p.173-177.
  • [11] Liu, C. C., Yeh, J. K., Aloia, J. F., 1988. Magnesium directly stimulates osteoblast proliferation, J. Bone Miner. Res., Volume. 3, p. 104.
  • [12] Carlisle, E. M., 1980. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency, J. Nutr., Volume. 110, p. 1046-1055.
  • [13] Wu, C., Chang, J., 2007. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics, J. Biomed. Mater. Res. Part B, p.153-160.
  • [14] Marie, P. J., Ammann, P., Boivin, G., Rey, C., 2001. Mechanisms of action and therapeutic potential of strontium in bone, Calcif. Tissue Int., Volume. 69, 121–129.
  • [15] Meunier, P.J., Roux, C., Seeman, E., Ortolani, S., Badurski, J. E., Spector, T. D., et al., 2004. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis, N. Engl. J. Med., Volume. 350, p. 459–468.
  • [16] Fardellone, P., et al. 2005. Strontium ranelate reduces the risk of vertebral fractures in osteoporotic postmenopausal women whatever the baseline vertebral fracture status, Bone, Volume. 36, p. 403.
  • [17] Reginster, J. Y., et al., 2005. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study, The journal of clinical endocrinology & metabolism, Volume. 90 [5], p. 2816-2822.
  • [18] Chengtie, W., et al., 2007. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties, Biomaterials, Volume. 28 [21], 3171-3181.
  • [19] Zhang, M., et al., 2010. Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Volume. 93[1], p.252-257.
  • [20] Gentleman, E., et al., 2010. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, Volume. 31[14], p.3949-3956.
  • [21] Martinez, I. M., Velasquez, P. A., Meseguer-Olmo, L., De Aza, P. N., 2011. Production and study of in vitro behaviour of monolithic α-Tricalcium Phosphate based ceramics in the system Ca3(PO4)2–Ca2SiO4, Ceram. Int., Volume. 37, p.2527–2535.
  • [22] Zuleta, F., Murciano, A., Gehrke, S. A., E.Maté-Sánchez de Val, J., Calvo-Guirado, J. L., De Aza, P. N., 2017. A New Biphasic Dicalcium Silicate Bone Cement Implant, Materials, Volume. 10[7], p.758.
  • [23] Choudhary, R., Koppala, S., Swamiaappan, S., 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis, Journal of Asian Ceramic Societies, Volume. 3, p.173-177.
  • [24] Ayala, A., Fetter, G., Palomares, E., Bosch, P., 2011. CuNi/Al hydrotalcites synthesized in presence of microwave irradiation, Mater. Lett., Volume. 65, p.1663–1665.
  • [25] Abdelkader, N. B. H., Bentouami, A., Derriche, Z., Bettahar, N., De Menorval, L. C., 2011. Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution, Chem. Eng. J., Volume. 169, p. 231–238.
  • [26] Park, J. B., 1979. Biomaterials An Introduction, 46-75p., New York.
  • [27] Demirel, M., Aksakal, B., Kaya, A.I., 2017. The effect and characterization of newly synthesized SrBr2 reinforced bone grafts on structure and cell viability, Journal of Sol-Gel Science and Technology, Volume. 82[2], p. 602-610.
  • [28] Liu, X., Rahaman, M. N., Hilmas, G. E., Bal, B.S., 2013. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair, Acta biomaterialia, Volume. 9[6], p. 7025-7034.
  • [29] Fu, Q., Saiz, E., Rahaman, M. N., Tomsia, A. P., 2011. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Mater. Sci. Eng. C, Volume. 31, p. 1245–56.
  • [30] Lewandrowski, K.U., Wise, D. L., Yaszemski, M.J., Gresser, J. D., Trantolo, D. J., Altobelli, D. E., 2002. Tissue engineering and biodegradable equivalents, scientific and clinical applications, Marcel Dekker Inc., New York, NY.

Alternatif Kemik Grefti Olarak Üretilen Yeni Biyogreftlerin Mikroyapılarının ve Mekanik Özelliklerinin Araştırılması

Yıl 2019, Cilt: 21 Sayı: 62, 607 - 620, 21.05.2019
https://doi.org/10.21205/deufmd.2019216224

Öz

Bu çalışmada, ortopedik uygulamalar için kullanılan
alternatif biyogreftler sol jel yöntemi ile üretilmiştir.  Üretilen biyogreftlerin morfolojik yapısı ve
mekanik özellikleri üzerine, borik asit, MgO ve SrBr2 bileşiklerinin etkileri
incelenmiştir. Bu amaçlar doğrultusunda, biyogreftlerin morfolojik etkileri
FTIR, XRD ve SEM-EDX analizleri ile incelenirken, mekanik özellikleri de
sertlik ve basma testleri yapılarak araştırılmıştır.



Bütün biyogreftler üzerine yapılan
FTIR ve XRD incelemeleri sonucu, biyogreftler de katkı malzemelerinin
kristaliteyi düşürdüğü ve HA(Hidroksiapatit), β-TCP (Beta trikalsiyum fosfat),
Ca3(Si3O9), Ca2H4O9P2 faz yapılarını oluşturduğu gözlenmiştir. Ayrıca yapılan
SEM-EDX ve mekanik testler sonucu da, bütün biyogreftlerde farklı boyutlarda
tane yapısının oluştuğu ve borik asit, MgO ve SrBr2 katkı malzemelerinin basma
mukavemeti ve sertlik değerlerini yükselttiği belirlenmiştir.

Kaynakça

  • [1] Liang, W., Rahaman, M. N., Day, D. E., Marion, N. W., Riley G. C., Mao J. J., 2008. Bioactive borate glass scaffold for bone tissue engineering, J. Non-Cryst. Solids, Volume. 354, p.1690–1696.
  • [2] Mariappan, C.R., Yunos, D. M., Boccaccini, A. R., Roling, B., 2009. Bioactivity of electro-thermally poled bioactive silicate glass, Acta Biomater., Volume. 5 [4], p.1274–1283.
  • [3] Ouis, M. A., Abdelghany, A. M., Elbatal, H. A., 2012. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass, Processing and Application of Ceramics, Volume. 6 [3], p.141–149.
  • [4] Hench, L.L., 1991. Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., Volume. 74, p.1487–1510.
  • [5] Deaza, P. N., Guitian, F., Deaza, S., 1994. Bioactivity of Wollastonite Ceramics: In Vitro Evaluation, Scr. Metall. Mater., Volume. 31, p. 1001–1005.
  • [6] Lin, K. L., Zhai, W. Y., Ni, S. Y., Chang, J., Zeng, Y., Qian, W. J., 2005. Study of the Mechanical Property and in vitro Biocompatibility of CaSiO3 Ceramics, Ceram. Int., Volume. 31, p. 323–326.
  • [7] Gou, Z. R., Chang, J., Zhai, W. Y., 2005. Preparation and Characterization of Novel Bioactive Dicalcium Silicate Ceramics, J. Eur. Ceram. Soc., Volume. 25, p. 1507–1514.
  • [8] Wu, C. T., Chang, J., Wang, J. Y., Ni, S. Y., Zhai, W. Y., 2005. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials, Volume. 26, p.925–2931.
  • [9] Wu, C. T., Chang, J., 2006. A novel akermanite bioceramic: preparation and characteristics, J. Biomater. Appl., Volume. 21, p.119–129.
  • [10] Choudhary, R., Koppala, S., Swamiappan, S., 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis, Journal of Asian Ceramic Societies, Volume. 3-2, p.173-177.
  • [11] Liu, C. C., Yeh, J. K., Aloia, J. F., 1988. Magnesium directly stimulates osteoblast proliferation, J. Bone Miner. Res., Volume. 3, p. 104.
  • [12] Carlisle, E. M., 1980. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency, J. Nutr., Volume. 110, p. 1046-1055.
  • [13] Wu, C., Chang, J., 2007. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics, J. Biomed. Mater. Res. Part B, p.153-160.
  • [14] Marie, P. J., Ammann, P., Boivin, G., Rey, C., 2001. Mechanisms of action and therapeutic potential of strontium in bone, Calcif. Tissue Int., Volume. 69, 121–129.
  • [15] Meunier, P.J., Roux, C., Seeman, E., Ortolani, S., Badurski, J. E., Spector, T. D., et al., 2004. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis, N. Engl. J. Med., Volume. 350, p. 459–468.
  • [16] Fardellone, P., et al. 2005. Strontium ranelate reduces the risk of vertebral fractures in osteoporotic postmenopausal women whatever the baseline vertebral fracture status, Bone, Volume. 36, p. 403.
  • [17] Reginster, J. Y., et al., 2005. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study, The journal of clinical endocrinology & metabolism, Volume. 90 [5], p. 2816-2822.
  • [18] Chengtie, W., et al., 2007. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties, Biomaterials, Volume. 28 [21], 3171-3181.
  • [19] Zhang, M., et al., 2010. Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Volume. 93[1], p.252-257.
  • [20] Gentleman, E., et al., 2010. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, Volume. 31[14], p.3949-3956.
  • [21] Martinez, I. M., Velasquez, P. A., Meseguer-Olmo, L., De Aza, P. N., 2011. Production and study of in vitro behaviour of monolithic α-Tricalcium Phosphate based ceramics in the system Ca3(PO4)2–Ca2SiO4, Ceram. Int., Volume. 37, p.2527–2535.
  • [22] Zuleta, F., Murciano, A., Gehrke, S. A., E.Maté-Sánchez de Val, J., Calvo-Guirado, J. L., De Aza, P. N., 2017. A New Biphasic Dicalcium Silicate Bone Cement Implant, Materials, Volume. 10[7], p.758.
  • [23] Choudhary, R., Koppala, S., Swamiaappan, S., 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis, Journal of Asian Ceramic Societies, Volume. 3, p.173-177.
  • [24] Ayala, A., Fetter, G., Palomares, E., Bosch, P., 2011. CuNi/Al hydrotalcites synthesized in presence of microwave irradiation, Mater. Lett., Volume. 65, p.1663–1665.
  • [25] Abdelkader, N. B. H., Bentouami, A., Derriche, Z., Bettahar, N., De Menorval, L. C., 2011. Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution, Chem. Eng. J., Volume. 169, p. 231–238.
  • [26] Park, J. B., 1979. Biomaterials An Introduction, 46-75p., New York.
  • [27] Demirel, M., Aksakal, B., Kaya, A.I., 2017. The effect and characterization of newly synthesized SrBr2 reinforced bone grafts on structure and cell viability, Journal of Sol-Gel Science and Technology, Volume. 82[2], p. 602-610.
  • [28] Liu, X., Rahaman, M. N., Hilmas, G. E., Bal, B.S., 2013. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair, Acta biomaterialia, Volume. 9[6], p. 7025-7034.
  • [29] Fu, Q., Saiz, E., Rahaman, M. N., Tomsia, A. P., 2011. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Mater. Sci. Eng. C, Volume. 31, p. 1245–56.
  • [30] Lewandrowski, K.U., Wise, D. L., Yaszemski, M.J., Gresser, J. D., Trantolo, D. J., Altobelli, D. E., 2002. Tissue engineering and biodegradable equivalents, scientific and clinical applications, Marcel Dekker Inc., New York, NY.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehtap Demirel 0000-0003-2362-314X

Dilek Çanakçı Bu kişi benim 0000-0003-3660-4829

Yayımlanma Tarihi 21 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 21 Sayı: 62

Kaynak Göster

APA Demirel, M., & Çanakçı, D. (2019). Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(62), 607-620. https://doi.org/10.21205/deufmd.2019216224
AMA Demirel M, Çanakçı D. Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft. DEUFMD. Mayıs 2019;21(62):607-620. doi:10.21205/deufmd.2019216224
Chicago Demirel, Mehtap, ve Dilek Çanakçı. “Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, sy. 62 (Mayıs 2019): 607-20. https://doi.org/10.21205/deufmd.2019216224.
EndNote Demirel M, Çanakçı D (01 Mayıs 2019) Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 62 607–620.
IEEE M. Demirel ve D. Çanakçı, “Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft”, DEUFMD, c. 21, sy. 62, ss. 607–620, 2019, doi: 10.21205/deufmd.2019216224.
ISNAD Demirel, Mehtap - Çanakçı, Dilek. “Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/62 (Mayıs 2019), 607-620. https://doi.org/10.21205/deufmd.2019216224.
JAMA Demirel M, Çanakçı D. Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft. DEUFMD. 2019;21:607–620.
MLA Demirel, Mehtap ve Dilek Çanakçı. “Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 21, sy. 62, 2019, ss. 607-20, doi:10.21205/deufmd.2019216224.
Vancouver Demirel M, Çanakçı D. Investigation of The Microstructures And Mechanical Properties of New Biografts As Alternative Bone Graft. DEUFMD. 2019;21(62):607-20.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.