Araştırma Makalesi
BibTex RIS Kaynak Göster

Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS denied Environment

Yıl 2020, Cilt: 22 Sayı: 65, 625 - 637, 15.05.2020
https://doi.org/10.21205/deufmd.2020226528

Öz



Unmanned
aerial vehicles (UAVs) become very popular in the last years with the help of
increasing computing power per area and per cost. While UAVs with a global
positioning system (GPS) can easily operate to fly autonomously, this and
such sensors' data cannot always be trusted. And most of the cases for small
scale UAVs, we cannot use these kinds of sensors because of cost, complexity,
and weight. Safely and reliably operating close to unknown indoor or
GPS-denied environments requires improving UAVs' sensing, localization, and
control algorithms. To solve and to improve for a UAV is one problem;
extending it to multiple UAVs is another problem. We study and develop a
framework for multiple UAVs to command and control from web-based front-end.
In our experiments, a quadcopter platform called AR Drone from Parrot Inc.
used because of its open-source API and kernel-level arrangements. Test
flights inside a warehouse validate the framework is capable of control one
or more quadcopters in a given lattice-based path from a web browser. UAVs
are capable of localizing its position by using IMU, front, and bottom
cameras. All UAVs interconnected to each other and controller computer
through a self-healing network, so if one or more quadcopter fails because of
lack of battery or any other circumstances, the rest of the group continues
its mission. Experiments are also expanded to outdoor to demonstrate rooftop
trips for vehicles in convoy and also reconnaissance missions, especially for
Mine-Resistant Ambush Protected (MRAP) vehicles.


Proje Numarası

2012.KB.FEN.116

Kaynakça

  • Bachrach A. G. 2009. Autonomous flight in unstructured and unknown indoor environments. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, M.Sc. Thesis, 126pg, Massachusetts
  • Bouabdallah S. 2007. Design and control of quadrotors with application to autonomous flying. Ecole Polytech Federale de Lausanne, Ph.D. Thesis, 155pg, Lausanne DOI: 10.5075/epfl-thesis-3727
  • Bry A., Bachrach A., and Roy N. 2012. State estimation for aggressive flight in gps-denied environments using onboard sensing. Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, pp. 1–8 DOI: 10.1109/ICRA.2012.6225295
  • Bills C., Chen J., and Saxena A. 2011. Autonomous mav flight in indoor environments using single image perspective cues. Robotics and automation (ICRA), 2011 IEEE international conference on. IEEE, pp. 5776–5783 DOI: 10.1109/ICRA.2011.5980136
  • Roberts J. F., Stirling T., Zufferey J.-C., and Floreano D. 2007. Quadrotor using minimal sensing for autonomous indoor flight. European Micro Air Vehicle Conference and Flight Competition (EMAV2007), no. LIS-CONF-2007-006
  • Valenti M., Bethke B., Fiore G., and How J. 2006. Indoor multi-vehicle flight testbed for fault detection, isolation, and recovery. in Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, Keystone, CO, Aug., pp. 2006–6200 DOI: 10.2514/6.2006-6200
  • Venugopalan, T. K., Taher, T., & Barbastathis, G. 2012. Autonomous landing of an Unmanned Aerial Vehicle on an autonomous marine vehicle. In Oceans, 2012 (pp. 1-9). IEEE. DOI: 10.1109/OCEANS.2012.6404893
  • Richards A., Bellingham J., Tillerson M., and How J. 2002. Co-ordination and control of multiple UAVs. Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, Monterey, CA, Aug., pp. 2002–4588 DOI: 10.2514/6.2002-4588
  • Vago Santana, L., Brandao, A. S., Sarcinelli-Filho, M., & Carelli, R. 2014. A trajectory tracking and 3d positioning controller for the ar. drone quadrotor. In Unmanned Aircraft Systems (ICUAS), 2014 International Conference on (pp. 756-767). IEEE. DOI: 10.1109/ICUAS.2014.6842321
  • Hoffmann G., Waslander S., and Tomlin C. 2008. Quadrotor helicopter trajectory tracking control. Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, Honolulu, HI, Apr., pp. 2008–7410 DOI: 10.2514/6.2008-7410
  • Watkinson J. 2004. Art of the Helicopter, Butterworth-Heinemann, 416pg
  • Krajnık T., Vonasek V., Fiser D., and Faigl J. 2011. AR-drone as a platform for robotic research and education. In Proc. of the Communications in Computer and Information Science (CCIS) DOI: 10.1007/978-3-642-21975-7_16
  • Krattenthaler C. 2015. Lattice Path Enumeration. Handbook of Enumerative Combinatorics, M. Bona (ed.), Discrete Math. and Its Appl., CRC Press, Boca Raton-London-New York, pp. 589-678
  • Wallner M. (2016) Lattice Path Combinatorics. Ph.D. dissertation, Technischen Universitat Wien
  • Diggelen, F. and Enge, P. 2015. The World’s first GPS MOOC and Worldwide Laboratory using Smartphones. Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015), pp 361 – 369

GPS'siz Ortamlarda Kendini Onaran Ağ Mimarisi Kullanan Sürü Uçuşunun Web Tabanlı Kontrolü

Yıl 2020, Cilt: 22 Sayı: 65, 625 - 637, 15.05.2020
https://doi.org/10.21205/deufmd.2020226528

Öz



İnsansız hava araçları (İHA)
gelişen işlem gücünün hem alan hem de maliyet bazında artış göstermesi ile
olukça yayınlaşmıştır. Küresel konumlandırma sistemi (GPS) kullanan İHA'ların
otonom uçuşları, kullanmayanlara göre çok daha uygulanabilirdir. Ancak GPS ve
benzeri algılayıcılardan alınan veriler her zaman güvenilir değildir. Ayrıca
küçük ölçekli İHA'larda bu tarz algılayıcılar artan maliyet, karmaşıklık ve
ağırlık seviyelerinden dolayı kullanılması uygun olmamaktadır. Özellikle daha
önceden bilgi edinilmemiş iç mekanlarda veya GPS ve benzeri algılayıcıların
çevre koşullarından dolayı kullanılamadığı alanlarda güvenli ve güvenilir bir
şekilde çalışabilmek için İHA'ların algılama, konumlandırma ve kontrol
algoritmalarını geliştirmek gerekmektedir. Tek bir İHA için adreslenmiş bu
sorunları çözmek bir problem iken, bunu birden çok İHA ile birlikte
yapabilmek ayrı başlıca bir problemdir. Bu çalışmada, web tabanlı bir
kullanıcı arayüzü üzerinden birden çok İHA'yı kumanda ve kontrol edebilme
yeteneğine sahip yazılım çerçevesi geliştirilmiştir. Test ve deneylerimiz
esnasında, açık kaynaklı uygulama programlama arayüzü (API) ve gömülü
yazılımına çekirdek seviyesinde müdahale imkanı olan Parrot firmasına ait
ARDrone isimli dört rotorlu döner kanatlı uçan platformlar kullanılmıştır.
Fabrika depo bölgesinde, web tarayıcısı üzerinden verilen ızgara (lattice,
grid) tabanlı yol planı ile icra edilen test uçuşları; geliştirilen yazılım
çerçevesinin bir ve daha fazla dört rotorlu hava araçlarına başarılı görevler
yaptırdığı da doğrulamıştır. Testlerde kullanılan İHA'ların kendi konumlarını
çalışma bölgelerinde bulabilmesi için üzerlerinde bütünleşik olarak yer alan
ataletsel ölçüm birimi (IMU), ön ve alt kamera kullanılmıştır. Uçuş
görevindeki tüm İHA'lar birbirlerine, ana ağ geçidi olan İHA batarya veya
farklı bir sorun ile ulaşılamaz olması durumunda bile iletişimlerine ve
görevlerine devam edebilecekleri, kendini onaran ağ mimarisi ile bağlıdırlar.
Konvoydaki araçlar ve özellikle de mayına dayanıklı pusu korumalı (MRAP) araç
üzerlerinden gezi ve keşif amaçlı görevleri göstermek için deneyler dış mekanlara
da genişletilmiştir.


Destekleyen Kurum

Dokuz Eylül Üniversitesi - Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2012.KB.FEN.116

Kaynakça

  • Bachrach A. G. 2009. Autonomous flight in unstructured and unknown indoor environments. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, M.Sc. Thesis, 126pg, Massachusetts
  • Bouabdallah S. 2007. Design and control of quadrotors with application to autonomous flying. Ecole Polytech Federale de Lausanne, Ph.D. Thesis, 155pg, Lausanne DOI: 10.5075/epfl-thesis-3727
  • Bry A., Bachrach A., and Roy N. 2012. State estimation for aggressive flight in gps-denied environments using onboard sensing. Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, pp. 1–8 DOI: 10.1109/ICRA.2012.6225295
  • Bills C., Chen J., and Saxena A. 2011. Autonomous mav flight in indoor environments using single image perspective cues. Robotics and automation (ICRA), 2011 IEEE international conference on. IEEE, pp. 5776–5783 DOI: 10.1109/ICRA.2011.5980136
  • Roberts J. F., Stirling T., Zufferey J.-C., and Floreano D. 2007. Quadrotor using minimal sensing for autonomous indoor flight. European Micro Air Vehicle Conference and Flight Competition (EMAV2007), no. LIS-CONF-2007-006
  • Valenti M., Bethke B., Fiore G., and How J. 2006. Indoor multi-vehicle flight testbed for fault detection, isolation, and recovery. in Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, Keystone, CO, Aug., pp. 2006–6200 DOI: 10.2514/6.2006-6200
  • Venugopalan, T. K., Taher, T., & Barbastathis, G. 2012. Autonomous landing of an Unmanned Aerial Vehicle on an autonomous marine vehicle. In Oceans, 2012 (pp. 1-9). IEEE. DOI: 10.1109/OCEANS.2012.6404893
  • Richards A., Bellingham J., Tillerson M., and How J. 2002. Co-ordination and control of multiple UAVs. Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, Monterey, CA, Aug., pp. 2002–4588 DOI: 10.2514/6.2002-4588
  • Vago Santana, L., Brandao, A. S., Sarcinelli-Filho, M., & Carelli, R. 2014. A trajectory tracking and 3d positioning controller for the ar. drone quadrotor. In Unmanned Aircraft Systems (ICUAS), 2014 International Conference on (pp. 756-767). IEEE. DOI: 10.1109/ICUAS.2014.6842321
  • Hoffmann G., Waslander S., and Tomlin C. 2008. Quadrotor helicopter trajectory tracking control. Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, Honolulu, HI, Apr., pp. 2008–7410 DOI: 10.2514/6.2008-7410
  • Watkinson J. 2004. Art of the Helicopter, Butterworth-Heinemann, 416pg
  • Krajnık T., Vonasek V., Fiser D., and Faigl J. 2011. AR-drone as a platform for robotic research and education. In Proc. of the Communications in Computer and Information Science (CCIS) DOI: 10.1007/978-3-642-21975-7_16
  • Krattenthaler C. 2015. Lattice Path Enumeration. Handbook of Enumerative Combinatorics, M. Bona (ed.), Discrete Math. and Its Appl., CRC Press, Boca Raton-London-New York, pp. 589-678
  • Wallner M. (2016) Lattice Path Combinatorics. Ph.D. dissertation, Technischen Universitat Wien
  • Diggelen, F. and Enge, P. 2015. The World’s first GPS MOOC and Worldwide Laboratory using Smartphones. Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015), pp 361 – 369
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Onur Keskin 0000-0002-3018-845X

Zeki Kıral 0000-0002-9154-0509

Proje Numarası 2012.KB.FEN.116
Yayımlanma Tarihi 15 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 65

Kaynak Göster

APA Keskin, O., & Kıral, Z. (2020). Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS denied Environment. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(65), 625-637. https://doi.org/10.21205/deufmd.2020226528
AMA Keskin O, Kıral Z. Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS denied Environment. DEUFMD. Mayıs 2020;22(65):625-637. doi:10.21205/deufmd.2020226528
Chicago Keskin, Onur, ve Zeki Kıral. “Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS Denied Environment”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, sy. 65 (Mayıs 2020): 625-37. https://doi.org/10.21205/deufmd.2020226528.
EndNote Keskin O, Kıral Z (01 Mayıs 2020) Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS denied Environment. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 65 625–637.
IEEE O. Keskin ve Z. Kıral, “Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS denied Environment”, DEUFMD, c. 22, sy. 65, ss. 625–637, 2020, doi: 10.21205/deufmd.2020226528.
ISNAD Keskin, Onur - Kıral, Zeki. “Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS Denied Environment”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/65 (Mayıs 2020), 625-637. https://doi.org/10.21205/deufmd.2020226528.
JAMA Keskin O, Kıral Z. Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS denied Environment. DEUFMD. 2020;22:625–637.
MLA Keskin, Onur ve Zeki Kıral. “Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS Denied Environment”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 22, sy. 65, 2020, ss. 625-37, doi:10.21205/deufmd.2020226528.
Vancouver Keskin O, Kıral Z. Web Based Control of Multiple UAVs Using Self-Healing Network Architecture in GPS denied Environment. DEUFMD. 2020;22(65):625-37.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.