Bilgisayar ve internetin hayatımıza girmesi ile bilgiye erişmek daha kolay hale gelmiştir. İnternete ulaşımın kolaylaşması ve internet kullanıcılarının artması sonucu veri miktarı da her geçen saniye büyümektedir. Ancak doğru bilgiye erişebilmek için verilerin sınıflandırılması gereklidir. Sınıflandırma, verilerin belirli bir anlamsal kategoriye göre ayrılması işlemidir. Dijital belgelerin anlamsal kategorilere ayrılması, metnin ulaşılabilirliğini önemli ölçüde etkilemektedir. Bu çalışmada, farklı Türkçe haber kaynaklarından elde edilen veri kümesi üzerinde metin sınıflandırma çalışması yapılmıştır. Öncelikli olarak haber metinleri ön işlemeden geçirilmiş ve gövdelenmiştir. Ön işlemeden geçirilen metinler Tfidfvectorizer, Word2Vec ve FastText yöntemleri ile ayrı ayrı vektörize edildikten sonra Destek Vektör Makinesi (Support Vector Machine, SVM), Naive Bayes, Logistic Regression, Random Forest ve Yapay Sinir Ağı (Artificial Neural Network, ANN) yöntemleri ile sınıflandırılmıştır. Yapılan çalışma sonucuna göre en yüksek başarı oranı %95,75 ile FastText yöntemi ve vektör modeli ile elde edilen metnin SVM ile sınıflandırılmasından elde edilmiştir.
Accessing information has become very simple with computers and internet. As the internet access is easier and the internet users increase, the amount of data is growing every second. However, in order to access correct information, data must be classified. Classification is the process of separating data according to a certain semantic category. Dividing digital documents into semantic categories significantly affects the availability of the text. In this study, a text classification study was carried out on a data set obtained from different Turkish news sources. After the pre-processed texts are separately vectorized with Tfidfvectorizer, Word2Vec and FastText methods, they are classified with Support Vector Machine (SVM), Naive Bayes, Logistic Regression, Random Forest and Artificial Neural Network (ANN) methods. According to the results of the study, the highest success rate was obtained from the classification of the text gained with FastText method and vector model with 95.75% by SVM.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 15 Ocak 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 23 Sayı: 67 |
Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.