Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu
Yıl 2021,
Cilt: 23 Sayı: 67, 137 - 146, 15.01.2021
Yıldıray Aldemir
Elif Ant Bursalı
,
Mürüvvet Yurdakoç
Öz
Magnesium ferrite nanoparticles containing organic or inorganic support materials were preparated as heterogeneous catalysts. The characterization of the catalysts was performed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), emission scanning electronic microscope/energy dispersive spectroscopy (SEM/EDS). Magnetic properties of the catalysts were determined by a vibrating sample magnetometer (VSM). Specific surface area and pore size distribution of the catalysts were obtained from nitrogen adsorption-desorption data at 77K by Brunauer-Emmett-Teller (BET) method.
Kaynakça
- [1] Xie, X., Shen, W., 2009. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance, Nanoscale1, 1, 50-60. DOI: 10.1039/ B9NR00155G
- [2] Song, S., Wang, H., Song, A., Dong, S., Hao, J., 2014. Sponge phase producing porous CeO2 for catalytic oxidation of CO, Chemistry–A European Journal, 20(29), 9063-9072. DOI: 10.1002/chem. 201304836
- [3] Xie, P., Chen, L., Ma, Z., Huang, C., Huang, Z., Yue, Y., Hua, W., Tang, Y., Gao, Z., 2014. Hydrothermal conversion of Fe2O3/SiO2 spheres into Fe2O3/Silicalite-1 nanowires: Synthesis, characterization, and catalytic properties. Microporous and mesoporous materials, 200, 52-60. DOI: 10.1016/j.micromeso. 2014.08.020
- [4] Hong, S. S., 2005. Catalytic removal of carbon particulates over MgFe2O4 catalysts, Reaction Kinetics and Catalysis Letters, 84(2), 311-317. DOI:10.1007/s11144-005-0224-3
- [5] Ma, N., Yue, Y., Hua, W., Gao, Z., 2003. Selective oxidation of styrene over nanosized spinel-type MgxFe3−xO4 complex oxide catalysts, Applied Catalysis A: General, 251(1), 39-47. DOI: 10.1016/S0926-860X(03)00306-5
- [6] Liu, J., Qiao, S. Z., Chen, J. S., Lou, X. W. D., Xing, X., Lu, G. Q. M., 2011. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chemical Communications, 47(47), 12578-12591. DOI: 10.1039/C1CC13658E
- [7] Li, F., Zhu, Y., Wang, Y., 2014. Dual-responsive drug delivery system with real time tunable release behavior, Microporous and mesoporous materials, 200, 46-51. DOI: 10.1016/j.micromeso. 2014.07.060
- [8] Hao, J., Yang, W., Zhang, Z., Pan, S., Lu, B., Ke, X., Zhang, B., Tang, J., 2013. Hierarchical flower-like Co3− xFexO4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue, Nanoscale, 5(7), 3078-3082. DOI: 10.1039/ C3NR00041A
- [9] Yu, X. Y., Meng, Q. Q., Luo, T., Jia, Y., Sun, B., Li, Q. X., Liu, J. H., Huang, X. J., 2013. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions, Scientific reports, 3, 2886. DOI: 10.1038/srep02886
- [10] Wang, B., Wu, H., Yu, L., Xu, R., Lim, T. T., Lou, X. W., 2012. Template‐free formation of uniform urchin‐like α‐FeOOH hollow spheres with superior capability for water treatment, Advanced Materials, 24, 1111-1116. DOI: 10.1002/adma.201104599
- [11] Wen, Z., Zhang, Y., Dai, C., Chen, B., Guo, S., Yu, H., Wu, D., 2014. Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions, Microporous and mesoporous materials, 200, 235-244. DOI: 10.1016/j.micromeso. 2014.08.049
- [12] Lai, X., Li, J., Korgel, B. A., Dong, Z., Li, Z., Su, F., Du, J., Wang, D., 2011. General synthesis and gas‐sensing properties of multiple‐shell metal oxide hollow microspheres, Angewandte Chemie International Edition, 50(12), 2738-2741. DOI: 10.1002/anie. 201004900
- [13] Shao, M., Xu, X., Han, J., Zhao, J., Shi, W., Kong, X., Wei, M., Evans, D.G., Duan, X., 2011. Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors, Langmuir, 27(13), 8233-8240. DOI: 10.1021/la201521w
- [14] Chan, A., Orme, R. P., Fricker, R. A., Roach, P., 2013. Remote and local control of stimuli responsive materials for therapeutic applications, Advanced drug delivery reviews, 65(4), 497-514. DOI: 10.1016/j.addr.2012. 07.007
- [15] Laurent, S., Dutz, S., Häfeli, U. O., Mahmoudi, M., 2011. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Advances in colloid and interface science, 166(1-2), 8-23. DOI: 10.1016/j.cis.2011.04.003
- [16] Maehara, T., Konishi, K., Kamimori, T., Aono, H., Hirazawa, H., Naohara, T., Nomura, S., Kikkawa, H., Watanabe, Y., Kawachi, K., 2005. Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field, Journal of materials science, 40(1), 135-138. DOI: 10.1007/s10853-005-5698-x
- [17] Nonkumwong, J., Ananta, S., Jantaratana, P., Phumying, S., Maensiri, S., Srisombat, L., 2015. Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesized by hydrothermal technique. Journal of Magnetism and Magnetic Materials, 381, 226-234. DOI: 10.1016/j.jmmm. 2015.01.001
- [18] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
- [19] Ilhan, S., Izotova, S. G., Komlev, A. A., 2015. Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides, Ceramics International, 41(1), 577-585. DOI: 10.1016/j.ceramint.2014.08.106
- [20] Sheykhan, M., Mohammadnejad, H., Akbari, J., Heydari, A., 2012. Superparamagnetic magnesium ferrite nanoparticles: a magnetically reusable and clean heterogeneous catalyst, Tetrahedron Letters, 53(24), 2959-2964. DOI: 10.1016/j.tetlet.2012.03.069
- [21] Önal, M., 2006. Physicochemical properties of bentonites: an overview, Commun. Fac. Sci. Univ. Ank. Series B, 52, 7-21.
- [22] Bardziński, P. J., 2014. On the impact of intermolecular interactions between the quaternary ammonium ions on interlayer spacing of quat-intercalated montmorillonite: A molecular mechanics and ab-initio study, Applied clay science, 95, 323-339. DOI: 10.1016/j.clay.2014.04.035
- [23] AKÇAY, G., Yurdakoç, M. K., 1999. Nonyl-and dodecylamines intercalated bentonite and illite from Turkey, Turkish Journal of Chemistry, 23(1), 105-114.
- [24] Cross, W. B., Affleck, L., Kuznetsov, M. V., Parkin, I. P., Pankhurst, Q. A., 1999. Self-propagating high-temperature synthesis of ferrites MFe2O4 (M= Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field, Journal of Materials Chemistry, 9(10), 2545-2552. DOI: 10.1039/A904431K
[25] Huang, Y., Tang, Y., Wang, J., Chen, Q., 2006. Synthesis of MgFe2O4 nanocrystallites under mild conditions, Materials Chemistry and Physics, 97(2-3), 394-397, DOI: 10.1016/j.matchemphys.2005.08.035
- [26] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
- [27] Khot, V. M., Salunkhe, A. B., Thorat, N. D., Phadatare, M. R., Pawar, S. H., 2013. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications, Journal of Magnetism and Magnetic Materials, 332, 48-51. DOI: 10.1016/j.jmmm.2012.12.010
- [28] Hoque, S. M., Hakim, M. A., Mamun, A., Akhter, S., Hasan, M. T., Paul, D. P., Chattopadhayay, K., 2011. Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method, Materials Sciences and Applications, 2(11), 1564. DOI: 10.4236/msa.2011.211209
- [29] Wang, L., Ren, J., Wang, Y., Liu, X., Wang, Y., 2010. Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization, Journal of alloys and compounds, 490(1-2), 656-660. DOI: 10.1016/ j.jallcom.2009.10.131
- [30] Yu, B. Y., Kwak, S. Y., 2011. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach, Dalton Transactions, 40(39), 9989-9998. DOI: 10.1039/C1DT10650C
[31] Nejati, K., Zabihi, R., 2012. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chemistry Central Journal, 6(1), 23-28. DOI: 10.1186/1752-153X-6-23
- [32] Sing, K. S., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57(4), 603-619.
Preparation and characterization of magnetic featured supported heterogeneous catalysts
Yıl 2021,
Cilt: 23 Sayı: 67, 137 - 146, 15.01.2021
Yıldıray Aldemir
Elif Ant Bursalı
,
Mürüvvet Yurdakoç
Öz
Organik veya inorganik destek malzemeleri içeren magnezyum ferrit nanoparçacıklı heterojen katalizörler hazırlanmıştır. Katalizörlerin karakterizasyonu X-ışını toz kırınımı (XRD), Fourier dönüşümlü kızılötesi spektroskopi (FTIR), taramalı elektron mikroskop/enerji dağıtıcı spektroskopi (SEM/EDS) ile gerçekleştirilmiştir. Katalizörlerin manyetik özellikleri titreşimli örnek manyetometresi (VSM) ile belirlenmiştir. Katalizörlerin özgül yüzey alanı ve gözenek boyutu dağılımı, 77K'de azot adsorpsiyon-desorpsiyon verilerinden Brunauer-Emmett-Teller (BET) yöntemi ile elde edilmiştir.
Kaynakça
- [1] Xie, X., Shen, W., 2009. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance, Nanoscale1, 1, 50-60. DOI: 10.1039/ B9NR00155G
- [2] Song, S., Wang, H., Song, A., Dong, S., Hao, J., 2014. Sponge phase producing porous CeO2 for catalytic oxidation of CO, Chemistry–A European Journal, 20(29), 9063-9072. DOI: 10.1002/chem. 201304836
- [3] Xie, P., Chen, L., Ma, Z., Huang, C., Huang, Z., Yue, Y., Hua, W., Tang, Y., Gao, Z., 2014. Hydrothermal conversion of Fe2O3/SiO2 spheres into Fe2O3/Silicalite-1 nanowires: Synthesis, characterization, and catalytic properties. Microporous and mesoporous materials, 200, 52-60. DOI: 10.1016/j.micromeso. 2014.08.020
- [4] Hong, S. S., 2005. Catalytic removal of carbon particulates over MgFe2O4 catalysts, Reaction Kinetics and Catalysis Letters, 84(2), 311-317. DOI:10.1007/s11144-005-0224-3
- [5] Ma, N., Yue, Y., Hua, W., Gao, Z., 2003. Selective oxidation of styrene over nanosized spinel-type MgxFe3−xO4 complex oxide catalysts, Applied Catalysis A: General, 251(1), 39-47. DOI: 10.1016/S0926-860X(03)00306-5
- [6] Liu, J., Qiao, S. Z., Chen, J. S., Lou, X. W. D., Xing, X., Lu, G. Q. M., 2011. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chemical Communications, 47(47), 12578-12591. DOI: 10.1039/C1CC13658E
- [7] Li, F., Zhu, Y., Wang, Y., 2014. Dual-responsive drug delivery system with real time tunable release behavior, Microporous and mesoporous materials, 200, 46-51. DOI: 10.1016/j.micromeso. 2014.07.060
- [8] Hao, J., Yang, W., Zhang, Z., Pan, S., Lu, B., Ke, X., Zhang, B., Tang, J., 2013. Hierarchical flower-like Co3− xFexO4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue, Nanoscale, 5(7), 3078-3082. DOI: 10.1039/ C3NR00041A
- [9] Yu, X. Y., Meng, Q. Q., Luo, T., Jia, Y., Sun, B., Li, Q. X., Liu, J. H., Huang, X. J., 2013. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions, Scientific reports, 3, 2886. DOI: 10.1038/srep02886
- [10] Wang, B., Wu, H., Yu, L., Xu, R., Lim, T. T., Lou, X. W., 2012. Template‐free formation of uniform urchin‐like α‐FeOOH hollow spheres with superior capability for water treatment, Advanced Materials, 24, 1111-1116. DOI: 10.1002/adma.201104599
- [11] Wen, Z., Zhang, Y., Dai, C., Chen, B., Guo, S., Yu, H., Wu, D., 2014. Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions, Microporous and mesoporous materials, 200, 235-244. DOI: 10.1016/j.micromeso. 2014.08.049
- [12] Lai, X., Li, J., Korgel, B. A., Dong, Z., Li, Z., Su, F., Du, J., Wang, D., 2011. General synthesis and gas‐sensing properties of multiple‐shell metal oxide hollow microspheres, Angewandte Chemie International Edition, 50(12), 2738-2741. DOI: 10.1002/anie. 201004900
- [13] Shao, M., Xu, X., Han, J., Zhao, J., Shi, W., Kong, X., Wei, M., Evans, D.G., Duan, X., 2011. Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors, Langmuir, 27(13), 8233-8240. DOI: 10.1021/la201521w
- [14] Chan, A., Orme, R. P., Fricker, R. A., Roach, P., 2013. Remote and local control of stimuli responsive materials for therapeutic applications, Advanced drug delivery reviews, 65(4), 497-514. DOI: 10.1016/j.addr.2012. 07.007
- [15] Laurent, S., Dutz, S., Häfeli, U. O., Mahmoudi, M., 2011. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Advances in colloid and interface science, 166(1-2), 8-23. DOI: 10.1016/j.cis.2011.04.003
- [16] Maehara, T., Konishi, K., Kamimori, T., Aono, H., Hirazawa, H., Naohara, T., Nomura, S., Kikkawa, H., Watanabe, Y., Kawachi, K., 2005. Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field, Journal of materials science, 40(1), 135-138. DOI: 10.1007/s10853-005-5698-x
- [17] Nonkumwong, J., Ananta, S., Jantaratana, P., Phumying, S., Maensiri, S., Srisombat, L., 2015. Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesized by hydrothermal technique. Journal of Magnetism and Magnetic Materials, 381, 226-234. DOI: 10.1016/j.jmmm. 2015.01.001
- [18] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
- [19] Ilhan, S., Izotova, S. G., Komlev, A. A., 2015. Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides, Ceramics International, 41(1), 577-585. DOI: 10.1016/j.ceramint.2014.08.106
- [20] Sheykhan, M., Mohammadnejad, H., Akbari, J., Heydari, A., 2012. Superparamagnetic magnesium ferrite nanoparticles: a magnetically reusable and clean heterogeneous catalyst, Tetrahedron Letters, 53(24), 2959-2964. DOI: 10.1016/j.tetlet.2012.03.069
- [21] Önal, M., 2006. Physicochemical properties of bentonites: an overview, Commun. Fac. Sci. Univ. Ank. Series B, 52, 7-21.
- [22] Bardziński, P. J., 2014. On the impact of intermolecular interactions between the quaternary ammonium ions on interlayer spacing of quat-intercalated montmorillonite: A molecular mechanics and ab-initio study, Applied clay science, 95, 323-339. DOI: 10.1016/j.clay.2014.04.035
- [23] AKÇAY, G., Yurdakoç, M. K., 1999. Nonyl-and dodecylamines intercalated bentonite and illite from Turkey, Turkish Journal of Chemistry, 23(1), 105-114.
- [24] Cross, W. B., Affleck, L., Kuznetsov, M. V., Parkin, I. P., Pankhurst, Q. A., 1999. Self-propagating high-temperature synthesis of ferrites MFe2O4 (M= Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field, Journal of Materials Chemistry, 9(10), 2545-2552. DOI: 10.1039/A904431K
[25] Huang, Y., Tang, Y., Wang, J., Chen, Q., 2006. Synthesis of MgFe2O4 nanocrystallites under mild conditions, Materials Chemistry and Physics, 97(2-3), 394-397, DOI: 10.1016/j.matchemphys.2005.08.035
- [26] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
- [27] Khot, V. M., Salunkhe, A. B., Thorat, N. D., Phadatare, M. R., Pawar, S. H., 2013. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications, Journal of Magnetism and Magnetic Materials, 332, 48-51. DOI: 10.1016/j.jmmm.2012.12.010
- [28] Hoque, S. M., Hakim, M. A., Mamun, A., Akhter, S., Hasan, M. T., Paul, D. P., Chattopadhayay, K., 2011. Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method, Materials Sciences and Applications, 2(11), 1564. DOI: 10.4236/msa.2011.211209
- [29] Wang, L., Ren, J., Wang, Y., Liu, X., Wang, Y., 2010. Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization, Journal of alloys and compounds, 490(1-2), 656-660. DOI: 10.1016/ j.jallcom.2009.10.131
- [30] Yu, B. Y., Kwak, S. Y., 2011. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach, Dalton Transactions, 40(39), 9989-9998. DOI: 10.1039/C1DT10650C
[31] Nejati, K., Zabihi, R., 2012. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chemistry Central Journal, 6(1), 23-28. DOI: 10.1186/1752-153X-6-23
- [32] Sing, K. S., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57(4), 603-619.