Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Dinamik Buhar Sıkıştırma Çevrimi Modelinin Geliştirilmesi ve Doğrulanması

Yıl 2021, Cilt: 23 Sayı: 69, 893 - 901, 15.09.2021
https://doi.org/10.21205/deufmd.2021236917

Öz

Isıtma, havalandırma ve iklimlendirme sistemlerinin sanayide ve konutlarda bir çok uygulaması bulunmakta ve dünya etrafındaki ülkelerin enerji tüketiminde büyük bir rol oynamaktadır. Bu sistemlerin dinamik davranışları analiz edilerek daha verimli çalışılmaları sağlanılabilir. Bu çalışmada bir buhar sıkıştırma çevriminin dinamik davranışı analiz edilmiştir. Evaporatör ve kondenser sonlu farklar yöntemiyle, genleşme vanası ve kompresör ise statik denklemlerle modellenmiştir. Evaporasyon ve kondensasyon korelasyonları olarak sırasıyla Gungor-Winterton ve Travis vd. korelasyonları kullanılmıştır. Genleşme vanası açıklığı ve kompresör motor hızı sisteme girdi değişkenleri olarak seçilmiştir. Önerilen sistemin doğrulanması için aynı dizayn özelliklerine sahip başka bir model SimulationX ortamında oluşturulmuştur. İki model de seçilen girdi değişkenlerinin belirli sürelerle değişen farklı değerine simülasyon zamanı boyunca maruz bırakılmış ve sistemlerin dinamik davranışları gözlenmiştir. Elde edilen sonuçlar iki modelin çıktılarının benzer olduğunu göstermiştir. En büyük tahmin farkı ısı değiştirgeci giriş sıcaklıklarında 1.4 K, kütlesel debilerde ise 2x10-4 kg/sn olarak gözlenmiştir.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

Yok

Kaynakça

  • [1] Goetzler, W., Shandross, R., Young, J., Petritchenko, O., Ringo, D., McClive, S. 2017. Energy Savings Potential and RD&D Opportunities for Commerical Building HVAC Systems, US Department of Energy, Massachussets, USA, 172s.
  • [2] MacArthur, J.W. 1984. Transient pump behaviour: a theoretical investigation. International Journal of Refrigeration, Cilt. 7, s. 123-132. DOI: 10.1016/0140-7007(84)90025-2.
  • [3] Chi, J. 1979. DEPAC- a computer model for design and performance analysis of central chillers. ASME Paper No 77-HT-11.
  • [4] Chi, J. 1976. Computer simulation of fossil-fuel-fired hydronic boilers. ASHRAE HVAC Equipment.
  • [5] Chi, J., Didion, D. 1982. A simulation model of the transient performance of a heat pump. International Journal of Refrigeration, Cilt. 5, s.176-184. DOI: 10.1016/0140-7007(82)90099-8
  • [6] Bonne, U., Patani, A., Jacobson, R., Muller, D. 1980. Electric-driven heat pump system: simulation and controls, ASHRAE Transactions LA-80-5 Los Angeles, California.
  • [7] Chen, Z.J., Lin, W. 1991. Dynamic simulation and optimal matching of a small-scale refrigeration system. International Journal of Refrigeration. Cilt. 5, s. 329-335. DOI: 10.1016/0140-7007(91)90028-F
  • [8] Fu, L., Ding, G., Zhang, C. 2003. Dynamic simulation of air-to-water dual-model heat pump with screw compressor. Applied Thermal Engineering. Cilt. 23, s. 1629-1645. DOI: 10.1016/S1359-4311(03)00109-1
  • [9] Rasmussen, B.P., Alleyne, A.G. 2006. Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration Systems. University of Illinois at Urbana-Chamapaign Air Conditioning and Refrigeration Center Technical Report TR-244.
  • [10] Rasmussen, B.P., Shenoy, B. 2012. Dynamic modeling for vapor compression systems-Part II: Simulation Tutorial. HVAC&R Research. Cilt. 18, s. 956-973. DOI: 10.1080/10789669.2011.582917
  • [11] Güngör K.E., Winterton, R.H.S. 1985. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer. Cilt. 29, s. 351-358. DOI: 10.1016/0017-9310(86)90205-X
  • [12] Travis, D.P., Baron, A.G., Rosenhow, W.M. 1971. Forced-convection condensation inside tubes. MIT Heat Transfer Laboratory, 74.
  • [13] Müller-Steinhagen, H., Heck, K. 1986. A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes. Chemical Engineering and Processing: Process Intensification. Cilt. 20, s. 297-308. DOI: 10.1016/0255-2701(86)80008-3
  • [14] ESI ITI SimulationX. 2020. SimulationX. www.simulationx.com. (Accessed: 25.11.2020)
  • [15] Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P. 2018. Fundamentals of Heat and Mass Transfer 8th edition. Wiley Publishing, USA, 992s.
  • [16] Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O. 2018. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard reference Data Program, Gaithersburg, 2018. DOI: 10.18434/T4/1502528

Development and Validation of a Dynamic Vapor Compression Cycle Model

Yıl 2021, Cilt: 23 Sayı: 69, 893 - 901, 15.09.2021
https://doi.org/10.21205/deufmd.2021236917

Öz

Heating, ventilation and air conditioning systems have widespread household and industrial applications and play a leading role in the energy consumption of countries around the world. By analyzing the dynamic behavior of these systems, it is possible to make them operate more efficiently. In this study, the dynamic behavior of a vapor compression cycle is analyzed. The evaporator and condenser are modeled with the finite-difference method and the expansion valve and compressor are modeled with static relationships. Gungor-Winterton and Travis et al. correlations are, respectively used as the evaporation and condensation correlations. The expansion valve openness and compressor motor speed are selected as the input variables to the system. Another model with the same design specifications is developed in the SimulationX environment to verify the proposed model. Both models are perturbed with the two input variables with varying values over constant intervals and the transient behavior of the system is investigated. The results showed that the outcomes of the two models agree well with each other. The largest prediction difference is observed as 2x10-4 kg/sec. for the mass flow rates and 1.4 K for the heat exchangers inlet temperatures.

Proje Numarası

Yok

Kaynakça

  • [1] Goetzler, W., Shandross, R., Young, J., Petritchenko, O., Ringo, D., McClive, S. 2017. Energy Savings Potential and RD&D Opportunities for Commerical Building HVAC Systems, US Department of Energy, Massachussets, USA, 172s.
  • [2] MacArthur, J.W. 1984. Transient pump behaviour: a theoretical investigation. International Journal of Refrigeration, Cilt. 7, s. 123-132. DOI: 10.1016/0140-7007(84)90025-2.
  • [3] Chi, J. 1979. DEPAC- a computer model for design and performance analysis of central chillers. ASME Paper No 77-HT-11.
  • [4] Chi, J. 1976. Computer simulation of fossil-fuel-fired hydronic boilers. ASHRAE HVAC Equipment.
  • [5] Chi, J., Didion, D. 1982. A simulation model of the transient performance of a heat pump. International Journal of Refrigeration, Cilt. 5, s.176-184. DOI: 10.1016/0140-7007(82)90099-8
  • [6] Bonne, U., Patani, A., Jacobson, R., Muller, D. 1980. Electric-driven heat pump system: simulation and controls, ASHRAE Transactions LA-80-5 Los Angeles, California.
  • [7] Chen, Z.J., Lin, W. 1991. Dynamic simulation and optimal matching of a small-scale refrigeration system. International Journal of Refrigeration. Cilt. 5, s. 329-335. DOI: 10.1016/0140-7007(91)90028-F
  • [8] Fu, L., Ding, G., Zhang, C. 2003. Dynamic simulation of air-to-water dual-model heat pump with screw compressor. Applied Thermal Engineering. Cilt. 23, s. 1629-1645. DOI: 10.1016/S1359-4311(03)00109-1
  • [9] Rasmussen, B.P., Alleyne, A.G. 2006. Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration Systems. University of Illinois at Urbana-Chamapaign Air Conditioning and Refrigeration Center Technical Report TR-244.
  • [10] Rasmussen, B.P., Shenoy, B. 2012. Dynamic modeling for vapor compression systems-Part II: Simulation Tutorial. HVAC&R Research. Cilt. 18, s. 956-973. DOI: 10.1080/10789669.2011.582917
  • [11] Güngör K.E., Winterton, R.H.S. 1985. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer. Cilt. 29, s. 351-358. DOI: 10.1016/0017-9310(86)90205-X
  • [12] Travis, D.P., Baron, A.G., Rosenhow, W.M. 1971. Forced-convection condensation inside tubes. MIT Heat Transfer Laboratory, 74.
  • [13] Müller-Steinhagen, H., Heck, K. 1986. A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes. Chemical Engineering and Processing: Process Intensification. Cilt. 20, s. 297-308. DOI: 10.1016/0255-2701(86)80008-3
  • [14] ESI ITI SimulationX. 2020. SimulationX. www.simulationx.com. (Accessed: 25.11.2020)
  • [15] Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P. 2018. Fundamentals of Heat and Mass Transfer 8th edition. Wiley Publishing, USA, 992s.
  • [16] Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O. 2018. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard reference Data Program, Gaithersburg, 2018. DOI: 10.18434/T4/1502528
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mert Turgut 0000-0002-5739-2119

Proje Numarası Yok
Yayımlanma Tarihi 15 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 23 Sayı: 69

Kaynak Göster

APA Turgut, M. (2021). Development and Validation of a Dynamic Vapor Compression Cycle Model. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 893-901. https://doi.org/10.21205/deufmd.2021236917
AMA Turgut M. Development and Validation of a Dynamic Vapor Compression Cycle Model. DEUFMD. Eylül 2021;23(69):893-901. doi:10.21205/deufmd.2021236917
Chicago Turgut, Mert. “Development and Validation of a Dynamic Vapor Compression Cycle Model”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, sy. 69 (Eylül 2021): 893-901. https://doi.org/10.21205/deufmd.2021236917.
EndNote Turgut M (01 Eylül 2021) Development and Validation of a Dynamic Vapor Compression Cycle Model. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 893–901.
IEEE M. Turgut, “Development and Validation of a Dynamic Vapor Compression Cycle Model”, DEUFMD, c. 23, sy. 69, ss. 893–901, 2021, doi: 10.21205/deufmd.2021236917.
ISNAD Turgut, Mert. “Development and Validation of a Dynamic Vapor Compression Cycle Model”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (Eylül 2021), 893-901. https://doi.org/10.21205/deufmd.2021236917.
JAMA Turgut M. Development and Validation of a Dynamic Vapor Compression Cycle Model. DEUFMD. 2021;23:893–901.
MLA Turgut, Mert. “Development and Validation of a Dynamic Vapor Compression Cycle Model”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 23, sy. 69, 2021, ss. 893-01, doi:10.21205/deufmd.2021236917.
Vancouver Turgut M. Development and Validation of a Dynamic Vapor Compression Cycle Model. DEUFMD. 2021;23(69):893-901.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.