Araştırma Makalesi
BibTex RIS Kaynak Göster

Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri

Yıl 2022, Cilt: 24 Sayı: 70, 263 - 275, 17.01.2022
https://doi.org/10.21205/deufmd.2022247024

Öz

Bakterilerin elektrik yükü taşıması, elektrik alanından etkilenebileceklerinin bir göstergesidir. Buna örnek olarak, negatif elektrik yükü taşıyan Enterococcus faecalis (E. faecalis) bakterilerinin elektrik alan etkisi ile istenilen bir yöne doğru hareket ettirilebildiği tespit edildi. Çalışmada, gözenekli silisyum (GS) tabanlı sensör platformlarını elde etmek için n tipi tek kristal silisyum kullanılarak farklı parametrelerde uygulanan elektrokimyasal anodizasyon işlemi sonucu %60 gözeneklilik (7-15 μm gözenek boyutlarında) ve % 50 gözeneklilik (1-5 μm gözenek boyutlarında) olmak üzere iki farklı özellikte In/Si/GS/Ag yapılar elde edildi. Elde edilen bu GS tabanlı yapılar, negatif elektrik yükü bulunan E. faecalis bakterisi içeren sıvılara daldırılarak 0-5 kV/cm elektrik alan değerlerinin ileri yönde ve ters yönde uygulanması sonucu gözeneklere bakteri yaklaştırılması ve uzaklaştırılmasına farklı boyutlarda üretilmiş gözeneklerin etkisinin gösterilmesi amaçlandı. Gözenek boyutlarının ayarlanabilir olması nedeniyle bakterilerin farklı gözenek boyutlarına sahip yapılardaki elektriksel ölçümleri incelenerek, frekansa bağlı iletkenlik-frekans ve kapasitans-frekans değerleri tartışıldı.

Proje Numarası

2015-01-01-KAP03

Teşekkür

Prof. Dr. F. Köksal Çakırlar Prof. Dr. Ahmet Altındal

Kaynakça

  • A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends in Biotechnology. 2009, doi: 10.1016/j.tibtech.2008.12.004.
  • R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., 1992, doi: 10.1063/1.350839.
  • A. Julbe and J. D. F. Ramsay, “Chapter 4 Methods for the characterisation of porous structure in membrane materials,” Membr. Sci. Technol., 1996, doi: 10.1016/S0927-5193(96)80007-6.
  • K. Kobayashi, F. A. Harraz, S. Izuo, T. Sakka, and Y. H. Ogata, “Macropore growth in a prepatterned p-type silicon wafer,” Phys. Status Solidi Appl. Mater. Sci., 2007, doi: 10.1002/pssa.200674325.
  • A. Uhlir, “Electrolytic Shaping of Germanium and Silicon,” Bell Syst. Tech. J., 1956, doi: 10.1002/j.1538-7305.1956.tb02385.x.
  • P. M. Z. Hasan, V. K. Sajith, M. Shahnawaze Ansari, J. Iqbal, and A. Alshahrie, “Influence of HF concentration and current density on characteristic morphological features of mesoporous silicon,” Microporous Mesoporous Mater., 2017, doi: 10.1016/j.micromeso.2017.04.059.
  • I. Rea et al., “Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions,” J. Appl. Phys., 2010, doi: 10.1063/1.3273410.
  • T. J. Barnes, K. L. Jarvis, and C. A. Prestidge, “Recent advances in porous silicon technology for drug delivery,” Therapeutic Delivery. 2013, doi: 10.4155/tde.13.52.
  • B. Gupta, Y. Zhu, B. Guan, P. J. Reece, and J. J. Gooding, “Functionalised porous silicon as a biosensor: Emphasis on monitoring cells in vivo and in vitro,” Analyst. 2013, doi: 10.1039/c3an00081h.
  • R. J. Martin-Palma, “Biomedical applications of nanostructured porous silicon: a review,” J. Nanophotonics, 2010, doi: 10.1117/1.3496303.
  • S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends in Biotechnology. 2016, doi: 10.1016/j.tibtech.2015.09.012.
  • H. Bai, N. Cochet, A. Pauss, and E. Lamy, “Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media,” Colloids Surfaces B Biointerfaces, 2016, doi: 10.1016/j.colsurfb.2015.12.016.
  • S. B. T. De-Leon, R. Oren, M. E. Spira, N. Korbakov, S. Yitzchaik, and A. Sa’ar, “Porous silicon substrates for neurons culturing and bio-photonic sensing,” in Physica Status Solidi (A) Applications and Materials Science, 2005, doi: 10.1002/pssa.200461136.
  • E. Punzón-Quijorna et al., “Nanostructured porous silicon micropatterns as a tool for substrate-conditioned cell research,” Nanoscale Res. Lett., 2012, doi: 10.1186/1556-276X-7-396.
  • A. T. Poortinga, R. Bos, and H. J. Busscher, “Lack of effect of an externally applied electric field on bacterial adhesion to glass,” Colloids Surfaces B Biointerfaces, 2001, doi: 10.1016/S0927-7765(00)00184-3.
  • N. Massad-Ivanir et al., “Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry,” Sci. Rep., 2016, doi: 10.1038/srep38099.
  • N. Pal, S. Sharma, and S. Gupta, “Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique,” Biosens. Bioelectron., 2016, doi: 10.1016/j.bios.2015.09.037.
  • A. Bogomolova et al., “Challenges of electrochemical impedance spectroscopy in protein biosensing,” Anal. Chem., 2009, doi: 10.1021/ac9002358.
  • H. J. Schütt and E. Gerdes, “Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response,” J. Non. Cryst. Solids, 1992, doi: 10.1016/S0022-3093(05)80377-1.
  • R. D. Das, C. RoyChaudhuri, S. Maji, S. Das, and H. Saha, “Macroporous silicon based simple and efficient trapping platform for electrical detection of Salmonella typhimurium pathogens,” Biosens. Bioelectron., 2009, doi: 10.1016/j.bios.2009.04.014.
  • R. D. Das, A. Dey, S. Das, and C. Roychaudhuri, “Interdigitated electrode-less high-performance macroporous silicon structure as impedance biosensor for bacteria detection,” IEEE Sens. J., 2011, doi: 10.1109/JSEN.2010.2087746.
  • R. D. Das, N. Mondal, S. Das, and C. Roychaudhuri, “Optimized electrode geometry for an improved impedance based macroporous silicon bacteria detector,” IEEE Sens. J., 2012, doi: 10.1109/JSEN.2011.2175724.
  • P. B. Lillehoj, C. W. Kaplan, J. He, W. Shi, and C. M. Ho, “Rapid, Electrical Impedance Detection of Bacterial Pathogens Using Immobilized Antimicrobial Peptides,” J. Lab. Autom., 2014, doi: 10.1177/2211068213495207.
  • K. Samantaray, S. R. Mishra, G. Purohit, and P. S. Mohanty, “AC Electric Field Mediated Assembly of Bacterial Tetrads,” ACS Omega, 2020, doi: 10.1021/acsomega.9b04124.
  • S. Pudasaini, A. T. K. Perera, S. S. U. Ahmed, Y. B. Chong, S. H. Ng, and C. Yang, “An electroporation device with microbead-enhanced electric field for bacterial inactivation,” Inventions, 2020, doi: 10.3390/inventions5010002.
  • B. Jiang et al., “Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater,” Sci. Total Environ., 2020, doi: 10.1016/j.scitotenv.2020.137139.
  • T. F. Kong, P. Y. Tan, B. Z. Tay, X. Shen, and Marcos, “Bacteria and cancer cell pearl chain under dielectrophoresis,” Electrophoresis, 2021, doi: 10.1002/elps.202000277.
  • S. Güler, Ç. Oruç, and A. Altındal, “Electric field assisted deposition of E. coli bacteria into the pores of porous silicon,” J. Microbiol. Methods, 2019, doi: 10.1016/j.mimet.2019.04.018.
  • C. Oruc and S. Guler, “Effect of Au, Ag and Cu thin films’ thickness on the electrical parameters of metal-porous silicon direct hydrogen fuel cell,” Int. J. Hydrogen Energy, 2014, doi: 10.1016/j.ijhydene.2014.10.017.
  • Ç. ORUÇ, S. GÜLER, and H. M. LUŞ, “Metal-Gözenekli Silisyum Direk Hidrojen Pili Üretim Parametrelerinin Geliştirilmesi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., 2018, doi: 10.29109/gujsc.383081.
  • M. Merve Yüzüak, S. Altun, A. Altindal, and Z. Odabaş, “Dielectric properties and electronic absorption: A comparison of novel azo- and oxo-bridged phthalocyanines,” Dalt. Trans., 2014, doi: 10.1039/c4dt02998d.
  • F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” Sensors Actuators, B Chem., 2014, doi: 10.1016/j.snb.2014.06.048.
  • H. Anany, W. Chen, R. Pelton, and M. W. Griffiths, “Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes,” Appl. Environ. Microbiol., 2011, doi: 10.1128/AEM.05493-11.
  • J. H. Han et al., “Capture and detection of T7 bacteriophages on a nanostructured interface,” ACS Appl. Mater. Interfaces, 2014, doi: 10.1021/am500655r.

Changes in conductivity and capacitance as a result of the approach of E. faecalis bacteria carrying negative electrical charge to PS/Si structures produced in different porous sizes with the effect of electric field

Yıl 2022, Cilt: 24 Sayı: 70, 263 - 275, 17.01.2022
https://doi.org/10.21205/deufmd.2022247024

Öz

The fact that bacteria carry an electric charge is an indication that they can be affected by the electric field.As an example, it has been determined that Enterococcus faecalis (E. faecalis) bacteria carrying negative electrical charge can be moved in a desired direction by the effect of electric field.In this study, the porous silicon (PS) based sensor platform for obtaining the n-type single crystal electrochemical anodization process results apply to different parameters using silicon 60% porosity (7-15μmin pore size) and 50% porosity (the 1-5 μmpore size) to In / Si / PS / Ag structures with two different properties were obtained.These PS-based structures obtained were immersed in fluids containing negative electric charge E. faecalis bacteria and 0-5 kV / cm electric field values were applied in forward and reverse direction to show the effect of pores produced in different sizes on the approach and removal of bacteria to the pores.Since the pore sizes are adjustable, the electrical measurements of bacteria in structures with different pore sizes were examined, and the frequency-dependent conductivity-frequency and capacitance-frequency values were discussed.

Proje Numarası

2015-01-01-KAP03

Kaynakça

  • A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends in Biotechnology. 2009, doi: 10.1016/j.tibtech.2008.12.004.
  • R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., 1992, doi: 10.1063/1.350839.
  • A. Julbe and J. D. F. Ramsay, “Chapter 4 Methods for the characterisation of porous structure in membrane materials,” Membr. Sci. Technol., 1996, doi: 10.1016/S0927-5193(96)80007-6.
  • K. Kobayashi, F. A. Harraz, S. Izuo, T. Sakka, and Y. H. Ogata, “Macropore growth in a prepatterned p-type silicon wafer,” Phys. Status Solidi Appl. Mater. Sci., 2007, doi: 10.1002/pssa.200674325.
  • A. Uhlir, “Electrolytic Shaping of Germanium and Silicon,” Bell Syst. Tech. J., 1956, doi: 10.1002/j.1538-7305.1956.tb02385.x.
  • P. M. Z. Hasan, V. K. Sajith, M. Shahnawaze Ansari, J. Iqbal, and A. Alshahrie, “Influence of HF concentration and current density on characteristic morphological features of mesoporous silicon,” Microporous Mesoporous Mater., 2017, doi: 10.1016/j.micromeso.2017.04.059.
  • I. Rea et al., “Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions,” J. Appl. Phys., 2010, doi: 10.1063/1.3273410.
  • T. J. Barnes, K. L. Jarvis, and C. A. Prestidge, “Recent advances in porous silicon technology for drug delivery,” Therapeutic Delivery. 2013, doi: 10.4155/tde.13.52.
  • B. Gupta, Y. Zhu, B. Guan, P. J. Reece, and J. J. Gooding, “Functionalised porous silicon as a biosensor: Emphasis on monitoring cells in vivo and in vitro,” Analyst. 2013, doi: 10.1039/c3an00081h.
  • R. J. Martin-Palma, “Biomedical applications of nanostructured porous silicon: a review,” J. Nanophotonics, 2010, doi: 10.1117/1.3496303.
  • S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends in Biotechnology. 2016, doi: 10.1016/j.tibtech.2015.09.012.
  • H. Bai, N. Cochet, A. Pauss, and E. Lamy, “Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media,” Colloids Surfaces B Biointerfaces, 2016, doi: 10.1016/j.colsurfb.2015.12.016.
  • S. B. T. De-Leon, R. Oren, M. E. Spira, N. Korbakov, S. Yitzchaik, and A. Sa’ar, “Porous silicon substrates for neurons culturing and bio-photonic sensing,” in Physica Status Solidi (A) Applications and Materials Science, 2005, doi: 10.1002/pssa.200461136.
  • E. Punzón-Quijorna et al., “Nanostructured porous silicon micropatterns as a tool for substrate-conditioned cell research,” Nanoscale Res. Lett., 2012, doi: 10.1186/1556-276X-7-396.
  • A. T. Poortinga, R. Bos, and H. J. Busscher, “Lack of effect of an externally applied electric field on bacterial adhesion to glass,” Colloids Surfaces B Biointerfaces, 2001, doi: 10.1016/S0927-7765(00)00184-3.
  • N. Massad-Ivanir et al., “Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry,” Sci. Rep., 2016, doi: 10.1038/srep38099.
  • N. Pal, S. Sharma, and S. Gupta, “Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique,” Biosens. Bioelectron., 2016, doi: 10.1016/j.bios.2015.09.037.
  • A. Bogomolova et al., “Challenges of electrochemical impedance spectroscopy in protein biosensing,” Anal. Chem., 2009, doi: 10.1021/ac9002358.
  • H. J. Schütt and E. Gerdes, “Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response,” J. Non. Cryst. Solids, 1992, doi: 10.1016/S0022-3093(05)80377-1.
  • R. D. Das, C. RoyChaudhuri, S. Maji, S. Das, and H. Saha, “Macroporous silicon based simple and efficient trapping platform for electrical detection of Salmonella typhimurium pathogens,” Biosens. Bioelectron., 2009, doi: 10.1016/j.bios.2009.04.014.
  • R. D. Das, A. Dey, S. Das, and C. Roychaudhuri, “Interdigitated electrode-less high-performance macroporous silicon structure as impedance biosensor for bacteria detection,” IEEE Sens. J., 2011, doi: 10.1109/JSEN.2010.2087746.
  • R. D. Das, N. Mondal, S. Das, and C. Roychaudhuri, “Optimized electrode geometry for an improved impedance based macroporous silicon bacteria detector,” IEEE Sens. J., 2012, doi: 10.1109/JSEN.2011.2175724.
  • P. B. Lillehoj, C. W. Kaplan, J. He, W. Shi, and C. M. Ho, “Rapid, Electrical Impedance Detection of Bacterial Pathogens Using Immobilized Antimicrobial Peptides,” J. Lab. Autom., 2014, doi: 10.1177/2211068213495207.
  • K. Samantaray, S. R. Mishra, G. Purohit, and P. S. Mohanty, “AC Electric Field Mediated Assembly of Bacterial Tetrads,” ACS Omega, 2020, doi: 10.1021/acsomega.9b04124.
  • S. Pudasaini, A. T. K. Perera, S. S. U. Ahmed, Y. B. Chong, S. H. Ng, and C. Yang, “An electroporation device with microbead-enhanced electric field for bacterial inactivation,” Inventions, 2020, doi: 10.3390/inventions5010002.
  • B. Jiang et al., “Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater,” Sci. Total Environ., 2020, doi: 10.1016/j.scitotenv.2020.137139.
  • T. F. Kong, P. Y. Tan, B. Z. Tay, X. Shen, and Marcos, “Bacteria and cancer cell pearl chain under dielectrophoresis,” Electrophoresis, 2021, doi: 10.1002/elps.202000277.
  • S. Güler, Ç. Oruç, and A. Altındal, “Electric field assisted deposition of E. coli bacteria into the pores of porous silicon,” J. Microbiol. Methods, 2019, doi: 10.1016/j.mimet.2019.04.018.
  • C. Oruc and S. Guler, “Effect of Au, Ag and Cu thin films’ thickness on the electrical parameters of metal-porous silicon direct hydrogen fuel cell,” Int. J. Hydrogen Energy, 2014, doi: 10.1016/j.ijhydene.2014.10.017.
  • Ç. ORUÇ, S. GÜLER, and H. M. LUŞ, “Metal-Gözenekli Silisyum Direk Hidrojen Pili Üretim Parametrelerinin Geliştirilmesi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., 2018, doi: 10.29109/gujsc.383081.
  • M. Merve Yüzüak, S. Altun, A. Altindal, and Z. Odabaş, “Dielectric properties and electronic absorption: A comparison of novel azo- and oxo-bridged phthalocyanines,” Dalt. Trans., 2014, doi: 10.1039/c4dt02998d.
  • F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” Sensors Actuators, B Chem., 2014, doi: 10.1016/j.snb.2014.06.048.
  • H. Anany, W. Chen, R. Pelton, and M. W. Griffiths, “Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes,” Appl. Environ. Microbiol., 2011, doi: 10.1128/AEM.05493-11.
  • J. H. Han et al., “Capture and detection of T7 bacteriophages on a nanostructured interface,” ACS Appl. Mater. Interfaces, 2014, doi: 10.1021/am500655r.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Sevinç Güler 0000-0002-7974-3100

Çiğdem Oruç 0000-0001-8745-2461

Proje Numarası 2015-01-01-KAP03
Yayımlanma Tarihi 17 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 70

Kaynak Göster

APA Güler, S., & Oruç, Ç. (2022). Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(70), 263-275. https://doi.org/10.21205/deufmd.2022247024
AMA Güler S, Oruç Ç. Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri. DEUFMD. Ocak 2022;24(70):263-275. doi:10.21205/deufmd.2022247024
Chicago Güler, Sevinç, ve Çiğdem Oruç. “Negatif Elektrik yükü taşıyan E. Faecalis Bakterilerinin Elektrik Alan Etkisi Ile Farklı gözenekli Boyutlarda üretilen GS/Si yapılara yaklaştırılması Sonucu Iletkenlik Ve Kapasitans değişimleri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, sy. 70 (Ocak 2022): 263-75. https://doi.org/10.21205/deufmd.2022247024.
EndNote Güler S, Oruç Ç (01 Ocak 2022) Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 70 263–275.
IEEE S. Güler ve Ç. Oruç, “Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri”, DEUFMD, c. 24, sy. 70, ss. 263–275, 2022, doi: 10.21205/deufmd.2022247024.
ISNAD Güler, Sevinç - Oruç, Çiğdem. “Negatif Elektrik yükü taşıyan E. Faecalis Bakterilerinin Elektrik Alan Etkisi Ile Farklı gözenekli Boyutlarda üretilen GS/Si yapılara yaklaştırılması Sonucu Iletkenlik Ve Kapasitans değişimleri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/70 (Ocak 2022), 263-275. https://doi.org/10.21205/deufmd.2022247024.
JAMA Güler S, Oruç Ç. Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri. DEUFMD. 2022;24:263–275.
MLA Güler, Sevinç ve Çiğdem Oruç. “Negatif Elektrik yükü taşıyan E. Faecalis Bakterilerinin Elektrik Alan Etkisi Ile Farklı gözenekli Boyutlarda üretilen GS/Si yapılara yaklaştırılması Sonucu Iletkenlik Ve Kapasitans değişimleri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 24, sy. 70, 2022, ss. 263-75, doi:10.21205/deufmd.2022247024.
Vancouver Güler S, Oruç Ç. Negatif elektrik yükü taşıyan E. faecalis bakterilerinin elektrik alan etkisi ile farklı gözenekli boyutlarda üretilen GS/Si yapılara yaklaştırılması sonucu iletkenlik ve kapasitans değişimleri. DEUFMD. 2022;24(70):263-75.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.