Araştırma Makalesi
BibTex RIS Kaynak Göster

Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine

Yıl 2022, Cilt: 24 Sayı: 72, 939 - 951, 19.09.2022
https://doi.org/10.21205/deufmd.2022247222

Öz

Unmanned Aerial Vehicles (UAVs) are commonly propeller-driven and low-speed. The concept of cost-efficient, much higher speed and longer range applications of micro jet engines was previously addressed such that an existing basic turbojet engine was converted into a single spool turbofan without using additional components of booster and low pressure turbine. Normally, this situation emerges matching problems since two spools are required to adjust the fan speed independently. A simple solution was to use a Continuously Variable Transmission (CVT) gearbox to adjust optimal speed for the fan. As a result, missing of the positive functionality of the booster would lump into the fan root to form a unified low pressure compression system (unified-LPC). Such a unified-LPC demands unique characteristics of having an extreme twist, very high pressure ratio and mass flux at the root section than at the tip section, despite the exact opposite is being enforced due to the wheel speed rise with radius. In light of these challenges, this work aims to investigate detailed aerodynamics of an existing design previously made and reported by the authors. It is shown that, despite the aerodynamic loading contrast throughout the span, the unified-LPC can still have a wide operating range and acceptable off-design aerodynamics. Complementing the previous design-oriented work, this paper aims to provide guidelines for such unified compression systems.

Destekleyen Kurum

***

Proje Numarası

***

Kaynakça

  • [1] Hooper, P. 2005. Stepped piston engines for multi-fuel UAV application. IMechE Conference on Propulsion Systems for Unmanned Aircraft, 14 April, Bristol, UK.
  • [2] Lieh, J., Spahr, E., Behbahani, A., & Hoying, J. 2011. Design of hybrid propulsion systems for unmanned aerial vehicles. 47th AIAA/ ASME/ SAE/ ASEE Joint Propulsion Conference & Exhibit, 31 July - 3 August San Diego, CA, USA.
  • [3] Cirigliano, D., Frisch, A. M., Liu, F., & Sirignano, W. A. 2017. Diesel, Spark-Ignition, and Turboprop Engines for Long-Duration Unmanned Air Flights. Journal of Propulsion and Power, Vol.34 No.4, pp. 878-892. DOI: 10.2514/1.B36547.
  • [4] Chiang, H. W. D., Hsu, C. N., Lai, A., & Lin, R. 2002. An investigation of steady and dynamic performance of a small turbojet engine. ASME Turbo Expo 2002: Power for Land, Sea, and Air, 3-6 June, Amsterdam, The Netherlands, 1097-1104.
  • [5] Collie, W., Burgun, R., Heinzen, S., Hall, C., & Chokani, N. 2003. Advanced propulsion system design and integration for a turbojet powered unmanned aerial vehicle. 41st Aerospace Sciences Meeting and Exhibit 6-9 January. Reno, Nevada, USA.
  • [6] Toal, D. J., Keane, A. J., Benito, D., Dixon, J. A., Yang, J., ... & Kill, N. 2014. Multifidelity multidisciplinary whole-engine thermomechanical design optimization. Journal of Propulsion and Power, Vol.30 No.6, pp. 1654-1666. DOI: 10.2514/1.B35128.
  • [7] Michel, U. 2011. The benefits of variable area fan nozzles on turbofan engines. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 4-7 January 2011, Orlando, Florida, USA. DOI: 10.2514/6.2011-226
  • [8] Wilfert, G., Sieber, J., Rolt, A., Baker, N., Touyeras, A., & Colantuoni, S. 2007. New environmental friendly aero engine core concepts. XVIII International Symposium of Air Breathing Engines, Sept 2-7, Beijing, China.
  • [9] Rolt, A. M., & Kyprianidis, K. 2010. Assessment of New Aero Engine Core Concepts and Technologies in the EU Framework 6 NEWAC Programme. ICAS 2010 Congress Proceedings, 19-24 September, Nice, France.
  • [10] Xu, L., Kyprianidis, K. G., & Grönstedt, T. U. 2013. Optimization study of an intercooled recuperated aero-engine. Journal of Propulsion and Power, Vol. 29, No. 2, pp. 424-432. DOI: 10.2514/1.B34594.
  • [11] Kyprianidis, K. G., Rolt, A. M., & Grönstedt, T. 2014. Multidisciplinary analysis of a geared fan intercooled core aero-engine. Journal of Engineering for Gas Turbines and Power, Vol. 136, No.1. 011203 (11 pages). DOI: 10.1115/1.4025244.
  • [12] Kyprianidis, K. G., & Rolt, A. M. 2015. On the optimization of a geared fan intercooled core engine design. Journal of Engineering for Gas Turbines and Power, Vol. 137, No.4, 041201 (10 pages). DOI: 10.1115/1.4028544.
  • [13] Hendricks, E., & Tong, M. 2012. Performance and weight estimates for an advanced open rotor engine. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July-1 August 2012, Atlanta, Georgia, USA. DOI: 10.2514/6.2012-3911.
  • [14] Kadosh, K., & Cukurel, B. 2017. Micro-turbojet to turbofan conversion via continuously variable transmission: thermodynamic performance study. Journal of Engineering for Gas Turbines and Power, Vol. 139, No. 2, 022603 (10 pages). DOI: 10.1115/1.4034262.
  • [15] İlhan, M., Gürbüz, M. T., & Acarer, S. 2019. Unified low-pressure compressor concept for engines of future high-speed micro-unmanned aerial vehicles. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 233, No.14. DOI: 10.1177%2F0954410019840968.
  • [16] Acarer, S., & Özkol, Ü. 2019. Off-design analysis of transonic bypass fan systems using streamline curvature through-flow method. International Journal of Turbo & Jet-Engines, Vol. 36, No.2, pp. 137-146. DOI: 10.1515/tjj-2016-0083.
  • [17] Fowler, T. W. 1989. Jet Engines and Propulsion Systems for Engineers. GE Aircraft Engines, USA.
  • [18] Cumpsty, N.A. 1989. Compressor aerodynamics. Longman Scientific & Technical.
  • [19] Biollo, R. (2008). Systematic investigation on swept and leaned transonic compressor rotor blades.
  • [20] Suder, K. L. 1997. Blockage development in a transonic, axial compressor rotor. ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition 2-5 June, 1997, Orlando, Florida, USA.
  • [21] Kumar, A., & Pradeep, A. M. 2018, June. Performance Evaluation of a Tandem Rotor Under Design and Off-Design Operation. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway 11-15 June.

Değişken Çevrimli Mikro Turbofan Jet Motoru için Bütünleşik Düşük Basınç Kompresor Sisteminin Aerodinamik Analizleri

Yıl 2022, Cilt: 24 Sayı: 72, 939 - 951, 19.09.2022
https://doi.org/10.21205/deufmd.2022247222

Öz

İnsansız Hava Araçları (İHA'lar) genellikle pervaneli ve düşük hızlıdır. Mikro jet motorlarının düşük maliyetli, çok daha yüksek hızlı ve daha uzun menzilli bir konsepti, daha önceki çalışmalarda, mevcut bir temel turbojet motorunun, ek güçlendirici kompresör (“booster”) ve düşük basınçlı türbin kullanılmadan tek milli bir turbofana dönüştürüleceği şekilde ele alınmıştı. Normalde bu durum, fan hızını bağımsız olarak ayarlamak için iki mil gerektirdiğinden eşleşme sorunları ortaya çıkarır. Bir çözüm, fan için optimum hızı ayarlamak üzere Sürekli Değişken Şanzıman (CVT) dişli kutusu kullanmaktır. Sonuç olarak, güçlendirici kompresörün olumlu işlevselliğinin eksikligi, tek fan kademesi içerisinde fiili bir birleşik bir düşük basınçlı sıkıştırma sistemi (birleşik DBK) oluşturmak için fan köküne eklenecektir ve bu da fana ek yük bindirecektir. Böyle bir birleşik DBK, yarıçapla birlikte çark hız artışı nedeniyle tam tersinin fiziksel olarak dikte edilmesine rağmen, kökte uca kıyasla çok yüksek basınç oranı ve kütle akışına sahip olma ve aşırı bir bükülme gibi benzersiz özellikler gerektirir. Bu zorlukların ışığında, bu çalışma, yazarlar tarafından daha önce yapılmış ve rapor edilmiş mevcut bir tasarımın ayrıntılı aerodinamiğini araştırmayı amaçlamaktadır. Kanat uzunluğu boyunca aerodinamik yükleme kontrastına rağmen, birleşik DBK'nın hala geniş bir çalışma aralığına ve kabul edilebilir tasarım dışı aerodinamiğe sahip olabileceğini gösterilmiştir. Önceki tasarım odaklı çalışmayı tamamlayan bu makale, bu tür birleşik sıkıştırma sistemleri için tasarımcılara kılavuz sağlamayı amaçlamaktadır.

Proje Numarası

***

Kaynakça

  • [1] Hooper, P. 2005. Stepped piston engines for multi-fuel UAV application. IMechE Conference on Propulsion Systems for Unmanned Aircraft, 14 April, Bristol, UK.
  • [2] Lieh, J., Spahr, E., Behbahani, A., & Hoying, J. 2011. Design of hybrid propulsion systems for unmanned aerial vehicles. 47th AIAA/ ASME/ SAE/ ASEE Joint Propulsion Conference & Exhibit, 31 July - 3 August San Diego, CA, USA.
  • [3] Cirigliano, D., Frisch, A. M., Liu, F., & Sirignano, W. A. 2017. Diesel, Spark-Ignition, and Turboprop Engines for Long-Duration Unmanned Air Flights. Journal of Propulsion and Power, Vol.34 No.4, pp. 878-892. DOI: 10.2514/1.B36547.
  • [4] Chiang, H. W. D., Hsu, C. N., Lai, A., & Lin, R. 2002. An investigation of steady and dynamic performance of a small turbojet engine. ASME Turbo Expo 2002: Power for Land, Sea, and Air, 3-6 June, Amsterdam, The Netherlands, 1097-1104.
  • [5] Collie, W., Burgun, R., Heinzen, S., Hall, C., & Chokani, N. 2003. Advanced propulsion system design and integration for a turbojet powered unmanned aerial vehicle. 41st Aerospace Sciences Meeting and Exhibit 6-9 January. Reno, Nevada, USA.
  • [6] Toal, D. J., Keane, A. J., Benito, D., Dixon, J. A., Yang, J., ... & Kill, N. 2014. Multifidelity multidisciplinary whole-engine thermomechanical design optimization. Journal of Propulsion and Power, Vol.30 No.6, pp. 1654-1666. DOI: 10.2514/1.B35128.
  • [7] Michel, U. 2011. The benefits of variable area fan nozzles on turbofan engines. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 4-7 January 2011, Orlando, Florida, USA. DOI: 10.2514/6.2011-226
  • [8] Wilfert, G., Sieber, J., Rolt, A., Baker, N., Touyeras, A., & Colantuoni, S. 2007. New environmental friendly aero engine core concepts. XVIII International Symposium of Air Breathing Engines, Sept 2-7, Beijing, China.
  • [9] Rolt, A. M., & Kyprianidis, K. 2010. Assessment of New Aero Engine Core Concepts and Technologies in the EU Framework 6 NEWAC Programme. ICAS 2010 Congress Proceedings, 19-24 September, Nice, France.
  • [10] Xu, L., Kyprianidis, K. G., & Grönstedt, T. U. 2013. Optimization study of an intercooled recuperated aero-engine. Journal of Propulsion and Power, Vol. 29, No. 2, pp. 424-432. DOI: 10.2514/1.B34594.
  • [11] Kyprianidis, K. G., Rolt, A. M., & Grönstedt, T. 2014. Multidisciplinary analysis of a geared fan intercooled core aero-engine. Journal of Engineering for Gas Turbines and Power, Vol. 136, No.1. 011203 (11 pages). DOI: 10.1115/1.4025244.
  • [12] Kyprianidis, K. G., & Rolt, A. M. 2015. On the optimization of a geared fan intercooled core engine design. Journal of Engineering for Gas Turbines and Power, Vol. 137, No.4, 041201 (10 pages). DOI: 10.1115/1.4028544.
  • [13] Hendricks, E., & Tong, M. 2012. Performance and weight estimates for an advanced open rotor engine. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July-1 August 2012, Atlanta, Georgia, USA. DOI: 10.2514/6.2012-3911.
  • [14] Kadosh, K., & Cukurel, B. 2017. Micro-turbojet to turbofan conversion via continuously variable transmission: thermodynamic performance study. Journal of Engineering for Gas Turbines and Power, Vol. 139, No. 2, 022603 (10 pages). DOI: 10.1115/1.4034262.
  • [15] İlhan, M., Gürbüz, M. T., & Acarer, S. 2019. Unified low-pressure compressor concept for engines of future high-speed micro-unmanned aerial vehicles. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 233, No.14. DOI: 10.1177%2F0954410019840968.
  • [16] Acarer, S., & Özkol, Ü. 2019. Off-design analysis of transonic bypass fan systems using streamline curvature through-flow method. International Journal of Turbo & Jet-Engines, Vol. 36, No.2, pp. 137-146. DOI: 10.1515/tjj-2016-0083.
  • [17] Fowler, T. W. 1989. Jet Engines and Propulsion Systems for Engineers. GE Aircraft Engines, USA.
  • [18] Cumpsty, N.A. 1989. Compressor aerodynamics. Longman Scientific & Technical.
  • [19] Biollo, R. (2008). Systematic investigation on swept and leaned transonic compressor rotor blades.
  • [20] Suder, K. L. 1997. Blockage development in a transonic, axial compressor rotor. ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition 2-5 June, 1997, Orlando, Florida, USA.
  • [21] Kumar, A., & Pradeep, A. M. 2018, June. Performance Evaluation of a Tandem Rotor Under Design and Off-Design Operation. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway 11-15 June.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Muhammet Tayyip Gürbüz 0000-0002-4741-9429

Sercan Acarer Bu kişi benim 0000-0002-5891-7458

Proje Numarası ***
Yayımlanma Tarihi 19 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 72

Kaynak Göster

APA Gürbüz, M. T., & Acarer, S. (2022). Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(72), 939-951. https://doi.org/10.21205/deufmd.2022247222
AMA Gürbüz MT, Acarer S. Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine. DEUFMD. Eylül 2022;24(72):939-951. doi:10.21205/deufmd.2022247222
Chicago Gürbüz, Muhammet Tayyip, ve Sercan Acarer. “Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, sy. 72 (Eylül 2022): 939-51. https://doi.org/10.21205/deufmd.2022247222.
EndNote Gürbüz MT, Acarer S (01 Eylül 2022) Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 72 939–951.
IEEE M. T. Gürbüz ve S. Acarer, “Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine”, DEUFMD, c. 24, sy. 72, ss. 939–951, 2022, doi: 10.21205/deufmd.2022247222.
ISNAD Gürbüz, Muhammet Tayyip - Acarer, Sercan. “Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/72 (Eylül 2022), 939-951. https://doi.org/10.21205/deufmd.2022247222.
JAMA Gürbüz MT, Acarer S. Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine. DEUFMD. 2022;24:939–951.
MLA Gürbüz, Muhammet Tayyip ve Sercan Acarer. “Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 24, sy. 72, 2022, ss. 939-51, doi:10.21205/deufmd.2022247222.
Vancouver Gürbüz MT, Acarer S. Aerodynamic Analyses of an Integrated Low-Pressure Compression System for Adaptive-Cycle Micro Turbofan Type Jet Engine. DEUFMD. 2022;24(72):939-51.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.