Araştırma Makalesi
BibTex RIS Kaynak Göster

Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure

Yıl 2024, Cilt: 26 Sayı: 77, 341 - 349, 27.05.2024
https://doi.org/10.21205/deufmd.2024267719

Öz

The objective of this study is to investigate and obtain an adjustable friction force between an elastic polymeric post with cavity and a rigid, smooth, flat surface. Elastic cylindrical posts made of polymers are generally used as surface texturing components. In this study, the friction force of the elastic cylindrical posts with a flat tip in contact with a smooth and rigid surface was adjusted by a pneumatic-based actuation system. Finite-element based simulation was performed to adjust the friction force of the cylindrical posts by pressurizing the inner cavity of the posts. The frictional contact between the elastic posts and the counter rigid surface was modeled using the Amontons-Coulomb friction law, neglecting the adhesive contribution. The friction force amplitude was calculated with different cavity dimensions of the elastic posts and different cavity pressure values. The results show that the presence of an internal cavity reduces the friction force, and the cavity diameter has more influence on the reduction of the friction force than the cavity height. In conclusion, regulating the cavity pressure was shown to be an effective method of adjusting the friction force.

Proje Numarası

118M302

Kaynakça

  • Wang, Z.W., Chen, M.W., Wu, J.W., Zheng, H.H., Zheng, X.F., 2010. A review of surface texture of tribological interfaces, In Applied Mechanics and Materials, Cilt. 37, s. 41-45. DOI: 10.4028/www.scientific.net/AMM.37-38.41
  • Varenberg, M., Gorb, S. N., 2009. Hexagonal surface micropattern for dry and wet friction, Advanced Materials, Cilt. 21(4), s. 483–486. DOI: 10.1002/adma.200802734
  • Etsion, I. 2004. Improving tribological performance of mechanical components by laser surface texturing, Tribology letters, Cilt. 17(4), s. 733–737. DOI: 10.1007/s11249-004-8081-1
  • Etsion, I. 2005. State of the art in laser surface texturing, Journal of Tribology., Cilt. 127(1), s. 248–253. DOI: 10.1115/1.1828070
  • Abdel-Aal, H. A. 2016. Functional surfaces for tribological applications: inspiration and design, Surface Topography: Metrology and Properties, Cilt. 4(4), s. 043001. DOI 10.1088/2051-672X/4/4/043001
  • Mohd Nasir, F.F., Ghani, J.A., Zamri, W.F.H.W., Kasim S. M. 2019. State-of-the-art surface texturing and methods for tribological performance. World Review of Science, Technology and Sustainable Development, Cilt. 15, s. 330–357. DOI: 10.1504/WRSTSD.2019.104096
  • Gachot, C., Rosenkranz, A., Hsu, S., Costa, H. 2017. A critical assessment of surface texturing for friction and wear improvement, Wear, Cilt..372, s. 21–41. DOI: 10.1016/j.wear.2016.11.020
  • He, B., Chen, W., Wang, Q. J. 2008. Surface texture effect on friction of a microtextured poly (dimethylsiloxane)(PDMS), Tribology Letters, Cilt. 31(3), s. 187. DOI: 10.1007/s11249-008-9351-0
  • Murarash, B., Itovich, Y., Varenberg, M. 2011. Tuning elastomer friction by hexagonal surface patterning, Soft Matter, Cilt. 7(12), s. 5553–5557. DOI: 10.1039/C1SM00015B
  • Degrandi-Contraires, E., Poulard, C., Restagno, F., Léger, L. 2012. Sliding friction at soft micropatterned elastomer interfaces, Faraday discussions, Cilt. 156(1), s. 255–265. DOI: 10.1039/C2FD00121G
  • Greiner, C., Merz, T., Braun, D., Codrignani, A., Magagnato, F. 2015. Optimum dimple diameter for friction reduction with laser surface texturing: the effect of velocity gradient, Surface Topography: Metrology and Properties, Cilt. 3(4), s. 044001. DOI: 10.1088/2051-672X/3/4/04400
  • Greiner, C., Schäfer, M. 2015. Bio-inspired scale-like surface textures and their tribological properties, Bioinspiration & biomimetics, Cilt. 10(4), s. 044001. DOI: 10.1088/1748-3190/10/4/044001
  • Greiner, C., Schafer, M., Popp, U., Gumbsch, P. 2014. Contact splitting and the effect of dimple depth on static friction of textured surfaces, ACS Applied Materials & Interfaces, Cilt. 6(11), s. 7986–7990. DOI: 10.1021/am500879m
  • Eray, T., Sümer, B., Koc, I. M. 2016. Analytical and experimental analysis on frictional dynamics of a single elastomeric pillar, Tribology International, Cilt. 100, s. 293–305. DOI: 10.1016/j.triboint.2016.02.013
  • Koc, I. M., Eray, T. 2018. Modeling frictional dynamics of a visco-elastic pillar rubbed on a smooth surface, Tribology International, Cilt. 127, s. 187-1999. DOI: 10.1016/j.triboint.2018.05.041
  • Popov, V.L. 2013. Method of reduction of dimensionality in contact and friction mechanics: A linkage between micro and macro scales, Friction, Cilt. 1(1), s. 41–62. DOI: 10.1007/s40544-013-0005-3
  • Marvi, H., Han, Y., Sitti, M. 2015. Actively controlled fibrillar friction surfaces, Applied Physics Letters, Cilt. 106(5), s. 051602. DOI: 10.1063/1.4907255
  • Eray, T., Koç, I M., Sumer, B. 2019. Investigation of adhesion and friction of an isotropic composite pillar, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Cilt. 233(4), s. 520-531. DOI: 10.1177/1350650118774427
  • Tian, Y., Zhao, Z., Zaghi, G., Kim, Y., Zhang, D. and Maboudian, R. 2015. Tuning the friction characteristics of gecko-inspired polydimethylsiloxane micropillar arrays by embedding Fe3O4 and SiO2 particles, ACS Applied Material & Interfaces, Cilt. 7, s. 13232–13237. DOI: 10.1021/acsami.5b03301
  • Fischer, S.C., Levy, O., Kroner, E., Hensel, R., Karp, J.M. and Arzt, E. 2016. Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue. journal of the mechanical behavior of biomedical materials, Cilt. 61, s. 87-95. DOI: 10.1016/j.jmbbm.2016.01.014
  • Sharifi, S., Rux, C., Sparling, N., Wan, G., Mohammadi Nasab, A., Siddaiah, A., Menezes, P., Zhang, T. and Shan, W. 2021. Dynamically Tunable Friction via Subsurface Stiffness Modulation. Frontiers in Robotics and AI, Cilt. 8, s. 691789. DOI: 10.3389/frobt.2021.691789
  • Arul, E.P., Ghatak, A. 2012. Control of adhesion via internally pressurized subsurface microchannels, Langmuir; Cilt. 28, s. 4339–4345. DOI: 10.1021/la204618u
  • Prieto-López, L.O. and Williams, J.A., 2016. Using microfluidics to control soft adhesion. Journal of adhesion science and Technology, Cilt. 30(14), s. 1555-1573. DOI: 10.1080/01694243.2016.1155878
  • Mohammadi Nasab, A., Luo, A., Sharifi, S., Turner, K.T. and Shan, W., 2020. Switchable adhesion via subsurface pressure modulation. ACS applied materials & interfaces, Cilt. 12(24), s .27717-27725. DOI: 10.1021/acsami.0c05367
  • Eray, T., 2022. Tunable adhesion of an elastic pillar by pressurizing inner cavity, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Cilt. 236(3), s. 541-551. DOI: 10.1177/13506501211018291
  • Maugis, D., 2013. Contact, adhesion and rupture of elastic solids, 1st edition. Springer Berlin, Heidelberg, 414s.
  • Carpick, R. W., Ogletree, D. F., Salmeron, M. 1997. Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Applied Physics Letters, Cilt. 70(12), s. 1548-1550. DOI: 10.1063/1.118639

Kavite Boşluk Basıncını Düzenleyerek Elastik Çubuğun Ayarlanabilir Sürtünme Kuvveti

Yıl 2024, Cilt: 26 Sayı: 77, 341 - 349, 27.05.2024
https://doi.org/10.21205/deufmd.2024267719

Öz

Bu çalışmanın amacı, polimerik malzemeden yapılmış kavite içeren elastik bir çubuk ile sert, pürüzsüz, düz bir yüzey arasında ayarlanabilir bir sürtünme kuvvetinin araştırılması ve elde edilmesidir. Polimerlerden yapılan elastik silindirik çubuklar genellikle yüzey desenleme bileşeni olarak kullanılır. Bu çalışmada, düz ve rijit bir yüzeyle temas halinde olan düz uçlu elastik silindirik çubukların sürtünme kuvveti pnömatik tabanlı eyleyici sistemi ile ayarlanmıştır. Silindirik çubukların sürtünme kuvvetini çubukların iç kaviteye basınç uygulayarak ayarlamak için sonlu elemanlar tabanlı simülasyon gerçekleştirilmiştir. Elastik çubuklar ile karşıt rijit yüzey arasındaki sürtünme kuvveti, adeziv katkısı ihmal edilerek Amontons-Coulomb Sürtünme Kanunu kullanılarak modellenmiştir. Sürtünme kuvvet genliği, elastik çubukların farklı kavite boyutları ve farklı kavite basınç değerleri ile hesaplanmıştır. Bulgular; kaviteye sahip olmanın sürtünme kuvvetini azalttığını, kavite çapının sürtünme kuvvetinin azalması üzerinde kavite uzunluğundan daha fazla etkiye sahip olduğunu göstermektedir. Sonuç olarak, kavite içindeki basıncı düzenlemenin sürtünme kuvvetini ayarlamak için etkili bir yöntem olduğu gösterilmiştir.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

118M302

Teşekkür

Yazar, TÜBİTAK'a desteklerinden dolayı teşekkür eder. Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 118M302 proje numarası ile desteklenmiştir.

Kaynakça

  • Wang, Z.W., Chen, M.W., Wu, J.W., Zheng, H.H., Zheng, X.F., 2010. A review of surface texture of tribological interfaces, In Applied Mechanics and Materials, Cilt. 37, s. 41-45. DOI: 10.4028/www.scientific.net/AMM.37-38.41
  • Varenberg, M., Gorb, S. N., 2009. Hexagonal surface micropattern for dry and wet friction, Advanced Materials, Cilt. 21(4), s. 483–486. DOI: 10.1002/adma.200802734
  • Etsion, I. 2004. Improving tribological performance of mechanical components by laser surface texturing, Tribology letters, Cilt. 17(4), s. 733–737. DOI: 10.1007/s11249-004-8081-1
  • Etsion, I. 2005. State of the art in laser surface texturing, Journal of Tribology., Cilt. 127(1), s. 248–253. DOI: 10.1115/1.1828070
  • Abdel-Aal, H. A. 2016. Functional surfaces for tribological applications: inspiration and design, Surface Topography: Metrology and Properties, Cilt. 4(4), s. 043001. DOI 10.1088/2051-672X/4/4/043001
  • Mohd Nasir, F.F., Ghani, J.A., Zamri, W.F.H.W., Kasim S. M. 2019. State-of-the-art surface texturing and methods for tribological performance. World Review of Science, Technology and Sustainable Development, Cilt. 15, s. 330–357. DOI: 10.1504/WRSTSD.2019.104096
  • Gachot, C., Rosenkranz, A., Hsu, S., Costa, H. 2017. A critical assessment of surface texturing for friction and wear improvement, Wear, Cilt..372, s. 21–41. DOI: 10.1016/j.wear.2016.11.020
  • He, B., Chen, W., Wang, Q. J. 2008. Surface texture effect on friction of a microtextured poly (dimethylsiloxane)(PDMS), Tribology Letters, Cilt. 31(3), s. 187. DOI: 10.1007/s11249-008-9351-0
  • Murarash, B., Itovich, Y., Varenberg, M. 2011. Tuning elastomer friction by hexagonal surface patterning, Soft Matter, Cilt. 7(12), s. 5553–5557. DOI: 10.1039/C1SM00015B
  • Degrandi-Contraires, E., Poulard, C., Restagno, F., Léger, L. 2012. Sliding friction at soft micropatterned elastomer interfaces, Faraday discussions, Cilt. 156(1), s. 255–265. DOI: 10.1039/C2FD00121G
  • Greiner, C., Merz, T., Braun, D., Codrignani, A., Magagnato, F. 2015. Optimum dimple diameter for friction reduction with laser surface texturing: the effect of velocity gradient, Surface Topography: Metrology and Properties, Cilt. 3(4), s. 044001. DOI: 10.1088/2051-672X/3/4/04400
  • Greiner, C., Schäfer, M. 2015. Bio-inspired scale-like surface textures and their tribological properties, Bioinspiration & biomimetics, Cilt. 10(4), s. 044001. DOI: 10.1088/1748-3190/10/4/044001
  • Greiner, C., Schafer, M., Popp, U., Gumbsch, P. 2014. Contact splitting and the effect of dimple depth on static friction of textured surfaces, ACS Applied Materials & Interfaces, Cilt. 6(11), s. 7986–7990. DOI: 10.1021/am500879m
  • Eray, T., Sümer, B., Koc, I. M. 2016. Analytical and experimental analysis on frictional dynamics of a single elastomeric pillar, Tribology International, Cilt. 100, s. 293–305. DOI: 10.1016/j.triboint.2016.02.013
  • Koc, I. M., Eray, T. 2018. Modeling frictional dynamics of a visco-elastic pillar rubbed on a smooth surface, Tribology International, Cilt. 127, s. 187-1999. DOI: 10.1016/j.triboint.2018.05.041
  • Popov, V.L. 2013. Method of reduction of dimensionality in contact and friction mechanics: A linkage between micro and macro scales, Friction, Cilt. 1(1), s. 41–62. DOI: 10.1007/s40544-013-0005-3
  • Marvi, H., Han, Y., Sitti, M. 2015. Actively controlled fibrillar friction surfaces, Applied Physics Letters, Cilt. 106(5), s. 051602. DOI: 10.1063/1.4907255
  • Eray, T., Koç, I M., Sumer, B. 2019. Investigation of adhesion and friction of an isotropic composite pillar, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Cilt. 233(4), s. 520-531. DOI: 10.1177/1350650118774427
  • Tian, Y., Zhao, Z., Zaghi, G., Kim, Y., Zhang, D. and Maboudian, R. 2015. Tuning the friction characteristics of gecko-inspired polydimethylsiloxane micropillar arrays by embedding Fe3O4 and SiO2 particles, ACS Applied Material & Interfaces, Cilt. 7, s. 13232–13237. DOI: 10.1021/acsami.5b03301
  • Fischer, S.C., Levy, O., Kroner, E., Hensel, R., Karp, J.M. and Arzt, E. 2016. Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue. journal of the mechanical behavior of biomedical materials, Cilt. 61, s. 87-95. DOI: 10.1016/j.jmbbm.2016.01.014
  • Sharifi, S., Rux, C., Sparling, N., Wan, G., Mohammadi Nasab, A., Siddaiah, A., Menezes, P., Zhang, T. and Shan, W. 2021. Dynamically Tunable Friction via Subsurface Stiffness Modulation. Frontiers in Robotics and AI, Cilt. 8, s. 691789. DOI: 10.3389/frobt.2021.691789
  • Arul, E.P., Ghatak, A. 2012. Control of adhesion via internally pressurized subsurface microchannels, Langmuir; Cilt. 28, s. 4339–4345. DOI: 10.1021/la204618u
  • Prieto-López, L.O. and Williams, J.A., 2016. Using microfluidics to control soft adhesion. Journal of adhesion science and Technology, Cilt. 30(14), s. 1555-1573. DOI: 10.1080/01694243.2016.1155878
  • Mohammadi Nasab, A., Luo, A., Sharifi, S., Turner, K.T. and Shan, W., 2020. Switchable adhesion via subsurface pressure modulation. ACS applied materials & interfaces, Cilt. 12(24), s .27717-27725. DOI: 10.1021/acsami.0c05367
  • Eray, T., 2022. Tunable adhesion of an elastic pillar by pressurizing inner cavity, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Cilt. 236(3), s. 541-551. DOI: 10.1177/13506501211018291
  • Maugis, D., 2013. Contact, adhesion and rupture of elastic solids, 1st edition. Springer Berlin, Heidelberg, 414s.
  • Carpick, R. W., Ogletree, D. F., Salmeron, M. 1997. Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Applied Physics Letters, Cilt. 70(12), s. 1548-1550. DOI: 10.1063/1.118639
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Turgay Eray 0000-0002-6115-7242

Proje Numarası 118M302
Erken Görünüm Tarihi 14 Mayıs 2024
Yayımlanma Tarihi 27 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 77

Kaynak Göster

APA Eray, T. (2024). Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(77), 341-349. https://doi.org/10.21205/deufmd.2024267719
AMA Eray T. Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure. DEUFMD. Mayıs 2024;26(77):341-349. doi:10.21205/deufmd.2024267719
Chicago Eray, Turgay. “Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, sy. 77 (Mayıs 2024): 341-49. https://doi.org/10.21205/deufmd.2024267719.
EndNote Eray T (01 Mayıs 2024) Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 77 341–349.
IEEE T. Eray, “Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure”, DEUFMD, c. 26, sy. 77, ss. 341–349, 2024, doi: 10.21205/deufmd.2024267719.
ISNAD Eray, Turgay. “Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/77 (Mayıs 2024), 341-349. https://doi.org/10.21205/deufmd.2024267719.
JAMA Eray T. Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure. DEUFMD. 2024;26:341–349.
MLA Eray, Turgay. “Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 26, sy. 77, 2024, ss. 341-9, doi:10.21205/deufmd.2024267719.
Vancouver Eray T. Adjustable Friction Force of Elastic Post via Regulating Internal Cavity Pressure. DEUFMD. 2024;26(77):341-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.