Araştırma Makalesi
BibTex RIS Kaynak Göster

HY 80 Çeliğinin Aşındırıcı Ortamlardaki Mekanik Davranışının Deneysel Olarak İncelenmesi

Yıl 2024, Cilt: 26 Sayı: 77, 248 - 254, 27.05.2024
https://doi.org/10.21205/deufmd.2024267708

Öz

Bu çalışmada, HY 80 çeliğinin, HCI, H2 S0 4 ve NaOH çözeltileri gibi çeşitli ortamlardaki mekanik davranışı deneysel olarak incelenmiştir. Plaka numuneleri, çekme numuneleri ve V çentikli numuneler, HCl, H2 S0 4 and NaOH çözeltilerine daldırılmıştır. HY 80 çeliğinin yüzeyinde korozif ortamın agresifliğini belirlemek için her bir H2 S04 , NaOH ve HCl çözeltileri için daldırılan HY 80 yassı levha numunelerinin kütle kayıpları 1 hafta, 2 hafta ve 4 hafta sonra ölçülmüştür. Ayrıca, çekme numuneleri ve V çentikli numuneler, korozif ortamın HY 80 çeliklerinin kırılma tokluğu ve akma davranışı üzerindeki etkisini incelemek için 1, 2 ve 4 hafta boyunca daldırılmıştır. Sonuçlar, HY 80 çeliğinin akma dayanımı ve nihai çekme dayanımı, HCl ve H2 S04 'ün asidik çözeltilerine daldırıldıktan sonra azaldığını göstermesine rağmen, NaOH çözeltisine daldırıldıktan sonra değişkenlik göstermemiştir. Ayrıca asidik ortamın etkisi HY 80 çeliğinin kırılma tokluğunu düşürmüştür.

Kaynakça

  • Bao, M., Ren, C., Lei, M., Wang, X., Singh, A. & Guo, X. 2016. Electrochemical behavior of tensile stressed P110 steel in CO2 environment. Corrosion Science, vol. 112, pp. 585-595. http://dx.doi.org/10.1016/j.corsci.2016.08.021.
  • Ma, H. C., Fan, Y., Liu, Z. Y., Du, C. W. & Li, X. G. 2019. Effect of pre-strain on the electrochemical and stress corrosion cracking behavior of E690 steel in simulated marine atmosphere. Ocean Engineering, vol. 182, pp.188-195.
  • Luo, J., Luo, S., Li, L., Zhang, L., Wu, G. & Zhu, L. 2019. Stress corrosion cracking behavior of X90 pipeline steel and its weld joint at different applied potentials in near-neutral solutions. Natural Gas Industry B., vol. 6(2), pp. 138-144. https://doi.org/10.1016/j.ngib.2018.08.002.
  • Prosek, T., Nazarov, A., Bexell, U., Thierry, D. & Serak, J. 2008. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science, vol. 50(8), pp. 2216-2231. https://doi.org/10.1016/j.corsci.2008.06.008.
  • Liu, Y., Wang, Z., & Ke, W. 2014. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al. Corrosion Science, vol. 80, pp. 169-176. http://dx.doi.org/10.1016/j.corsci.2013.11.027.
  • Wang, X., Tang, X., Wang, L., Wang, C. & Guo, Z. 2014. Corrosion behavior of X80 pipeline steel under coupling effect of stress and stray current. International Journal of Electrochemical Science, vol. 9(8), pp. 4574-4588.
  • Gong, K., Wu, M., Xie, F., Liu, G. & Sun, D. 2020. Effect of dry/wet ratio and pH on the stress corrosion cracking behavior of rusted X100 steel in an alternating dry/wet environment. Construction and Building Material, vol. 260, 120478. https://doi.org/10.1016/j.conbuildmat.2020.120478.
  • Rudomilova, D., Prošek, T., Traxler, I., Faderl, J., Luckeneder, G., Schimo-Aichhorn, G. and Muhr, A. 2021. Critical Assessment of the Effect of Atmospheric Corrosion Induced Hydrogen on Mechanical Properties of Advanced High Strength Steel. Metals, vol. 11, 44. https://dx.doi.org/10.3390/met11010044.
  • Hou, Y., Lei, D., Li, S., Yang, W. and Li, C.-Q. 2016. Experimental Investigation on Corrosion Effect on Mechanical Properties of Buried Metal Pipes. International Journal of Corrosion, 5808372. http://dx.doi.org/10.1155/2016/5808372.
  • Liu, Z. Y., Li, Q., Cui, Z. Y., Wu, W., Li, Z., Du, C. W. & Li, X. G. 2017. Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments. Construction and Building Material, vol. 148, pp. 131-139. http://dx.doi.org/10.1016/j.conbuildmat.2017.05.058.
  • Niazi, H., Eadie, R., Chen, W., & Zhang, H. 2020. High pH stress corrosion cracking initiation and crack evolution in buried steel pipelines: A review. Engineering Failure Analysis, 105013. https://doi.org/10.1016/j.engfailanal.2020.105013.
  • Liu, G., Geng, J., Li, Y., Li, H., Wang, M., Chen, D., ... & Wang, H. 2021. Improved stress corrosion cracking resistance of in-situ TiB2/7050Al composite by pre-precipitation treatment. Micron, vol. 145, 103056. https://doi.org/10.1016/j.micron.2021.103056.
  • Fernandez, I., Bairán, J. M. & Marí, A. R. 2015. Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ–ε behavior. Construction and Building Material, vol. 101, pp. 772-783. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.139.
  • Sonsino, C. M. 2021. Consideration of Salt-Corrosion Fatigue for Lightweight Design and Proof of Aluminium Safety Components in Vehicle Applications. International Journal of Fatigue, 106406. https://doi.org/10.1016/j.ijfatigue.2021.106406.
  • Ghazizadeh, E., Jabbari, A. H. & Sedighi, M. 2021. In vitro corrosion-fatigue behavior of biodegradable Mg/HA composite in simulated body fluid. J. Magnes. Alloy. https://doi.org/10.1016/j.jma.2021.03.027.
  • Li, L., Mahmoodian, M. & Li, C. Q. 2018. Effect of corrosion on mechanical properties of steel bridge elements. In Proceedings of 9th International Conference on Bridge Maintenance Safety and Management.
  • Jebaraj, A. V., Aditya, K. V. V., Kumar, T. S., Ajaykumar, L. & Deepak, C. R. 2020. Mechanical and corrosion behaviour of aluminum alloy 5083 and its weldment for marine applications. Materials Today: Proceedings, vol. 22, pp. 1470-1478. https://doi.org/10.1016/j.matpr.2020.01.505.
  • Charalampidou, C., Dietzel, W., Zheludkevich, M., Kourkoulis, S. K. & Alexopoulos, N. D. 2021. Corrosion-induced mechanical properties degradation of Al-Cu-Li (2198-T351) aluminium alloy and the role of side-surface cracks. Corrosion Science, vol. 183, 109330. https://doi.org/10.1016/j.corsci.2021.109330.
  • Liu, M. 2021. Effect of uniform corrosion on mechanical behavior of E690 high strength steel lattice corrugated panel in marine environment: a finite element analysis. Material Research Express, vol. 8, 066510. https://doi.org/10.1088/2053-1591/ac0655.
  • Xu, L. Y. & Cheng, Y. F. 2012. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution. Corrosion Science, vol. 59, pp. 103-109. http://dx.doi.org/10.1016/j.corsci.2012.02.022.
  • Le, L., Sofi, M. & Lumantarna, E. 2021. The combined effect of stress and corrosion on mild steel. Journal of Constructional Steel Research vol. 185, 106805. https://doi.org/10.1016/j.jcsr.2021.106805.
  • Ren, R. K., Zhang, S., Pang, X. L. & Gao, K. W. 2012. A novel observation of the interaction between the macroelastic stress and electrochemical corrosion of low carbon steel in 3.5 wt% NaCl solution. Electrochimica Acta, vol. 85, pp. 283-294. http://dx.doi.org/10.1016/j.electacta.2012.08.079.
  • Necşulescu, D. A. 2011. The effects of corrosion on the mechanical properties of aluminium alloy 7075-T6. UPB Scientific Bulletin, vol. 73, pp. 223-229.
  • Kumar, S. R., Krishnaa, S. D., Krishna, M. D., Gokulkumar, N. T. & Akilesh, A. R. 2021. Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium. Materials Today: Proceedings, vol. 45, pp. 1878-1881. https://doi.org/10.1016/j.matpr.2020.09.079.
  • Hamidah, I., Solehudin, A., Hamdani, A., Hasanah, L., Khairurrijal, K., Kurniawan T., Mamt, R., Maryanti, R., Nandiyanto, A. & Hammouti, B. 2021. Corrosion of copper alloys in KOH, NaOH, NaCl, and HCl electrolyte solutions and its impact to the mechanical properties. Alexandria Engineering Journal, vol. 60(2), pp. 2235-2243. https://doi.org/10.1016/j.aej.2020.12.027.
  • Xu, S., Wang, H., Li, A., Wang, Y. & Su, L. 2016. Effects of corrosion on surface characterization and mechanical properties of butt-welded joints. Journal of Constructional Steel Research, vol. 126, pp. 50-62. http://dx.doi.org/10.1016/j.jcsr.2016.07.001.
  • Dovletoglou, E., Skarvelis, P., Stergiou, V. & Alexopoulos, N. D. 2018. Effect of corrosion exposure on the mechanical performance of 2024 aluminum alloy electron beam welded joints. Procedia Structural Integrity, vol. 10, pp. 73-78. https://doi.org/10.1016/j.prostr.2018.09.011.
  • Rajput, A., Paik, J. K. 2021. Effects of Naturally-Progressed Corrosion on the Chemical and Mechanical Properties of Structural Steels. Structures, vol. 29, pp. 2120-2138. https://doi.org/10.1016/j.istruc.2020.06.014.
  • Mishra, R. K. 2020. Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Materials Today: Proceedings, vol. 25, pp. 602-609. https://doi.org/10.1016/j.matpr.2019.07.375.
  • Garbatov, Y., Soares, C. G., Parunov, J. & Kodvanj, J. 2014. Tensile strength assessment of corroded small scale specimens. Corrosion Science, vol. 85, pp. 296-303. http://dx.doi.org/10.1016/j.corsci.2014.04.031.
  • Belkessa B., Giroud D., Ouali N., Cheniti B. Microstructure and Mechanical Behavior in Dissimilar SAF 2205/API X52 Welded Pipes. Acta Metallurgical Sinica (English Letters), 2016. https://doi.org/10.1007/s40195-016-0428-8.
  • Young G. W. 2012. Evaluation of Friction Stir Processing Of HY-80 Steel under Wet and Dry Condition. Naval Postgraduate School. Master’s Thesis. Monterey, California.
  • Zhang L., Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel, Materials Science and Engineering A 613, pp. 326-335, 2014. https://doi.org/doi:10.1016/j.msea.2014.06.106.
  • Institute of Turkish Standards, Metallic materials – Tensile testing, part 1: method of test at room temperature.
  • Institute of Turkish Standards, Metallic materials, Charpy pendulum impact test, part 1: test method.
  • Marcus, P. 2011. Corrosion mechanisms in theory and practice. Crc Press.
  • Revie, R. W. 2008. Corrosion and corrosion control. John Wiley & Sons.
  • Davis, J. R. 2004. Tensile Testing, ASM International, USA.
  • Anonim, Bartın Üniversitesi Mühendislik Fakültesi Metalurji ve Malzeme Mühendisliği Malzeme Laboratuarı I dersi çekme föyü. https://cdn.bartin.edu.tr/metalurji/d7ee7cd9-f063-4669-8e1c-393503ed6ffb/cekme-deney-foyu.pdf (date of access:08.08.2023)

An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums

Yıl 2024, Cilt: 26 Sayı: 77, 248 - 254, 27.05.2024
https://doi.org/10.21205/deufmd.2024267708

Öz

In this study, mechanical behavior of HY 80 steel in various mediums such as solutions of HCl, H2 S0 4 and NaOH has been investigated experimentally. The plate specimens, tensile specimens and V-notched specimens are immersed in solutions of HCl, H2 S0 4 and NaOH. Mass losses of immersed HY 80 flat plate specimens are measured after 1 week, 2 weeks and 4 weeks for each H2 S04 , NaOH and HCl solutions to determine the aggressivity of the corrosive medium to surface of HY 80 steel. Also, tensile specimens and V-notched specimens are immersed for 1, 2 and 4 weeks to study on the effect of corrosive medium on fracture toughness and yielding behavior of HY 80 steels. The results show that however, yielding strength and ultimate tensile strength of HY 80 steel have reduced after immersed in acidic solutions of HCl and H2 S04 , are stable after immersed in solution of NaOH. Furthermore, effect of acidic medium lower the fracture toughness of HY 80 steel.

Kaynakça

  • Bao, M., Ren, C., Lei, M., Wang, X., Singh, A. & Guo, X. 2016. Electrochemical behavior of tensile stressed P110 steel in CO2 environment. Corrosion Science, vol. 112, pp. 585-595. http://dx.doi.org/10.1016/j.corsci.2016.08.021.
  • Ma, H. C., Fan, Y., Liu, Z. Y., Du, C. W. & Li, X. G. 2019. Effect of pre-strain on the electrochemical and stress corrosion cracking behavior of E690 steel in simulated marine atmosphere. Ocean Engineering, vol. 182, pp.188-195.
  • Luo, J., Luo, S., Li, L., Zhang, L., Wu, G. & Zhu, L. 2019. Stress corrosion cracking behavior of X90 pipeline steel and its weld joint at different applied potentials in near-neutral solutions. Natural Gas Industry B., vol. 6(2), pp. 138-144. https://doi.org/10.1016/j.ngib.2018.08.002.
  • Prosek, T., Nazarov, A., Bexell, U., Thierry, D. & Serak, J. 2008. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science, vol. 50(8), pp. 2216-2231. https://doi.org/10.1016/j.corsci.2008.06.008.
  • Liu, Y., Wang, Z., & Ke, W. 2014. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al. Corrosion Science, vol. 80, pp. 169-176. http://dx.doi.org/10.1016/j.corsci.2013.11.027.
  • Wang, X., Tang, X., Wang, L., Wang, C. & Guo, Z. 2014. Corrosion behavior of X80 pipeline steel under coupling effect of stress and stray current. International Journal of Electrochemical Science, vol. 9(8), pp. 4574-4588.
  • Gong, K., Wu, M., Xie, F., Liu, G. & Sun, D. 2020. Effect of dry/wet ratio and pH on the stress corrosion cracking behavior of rusted X100 steel in an alternating dry/wet environment. Construction and Building Material, vol. 260, 120478. https://doi.org/10.1016/j.conbuildmat.2020.120478.
  • Rudomilova, D., Prošek, T., Traxler, I., Faderl, J., Luckeneder, G., Schimo-Aichhorn, G. and Muhr, A. 2021. Critical Assessment of the Effect of Atmospheric Corrosion Induced Hydrogen on Mechanical Properties of Advanced High Strength Steel. Metals, vol. 11, 44. https://dx.doi.org/10.3390/met11010044.
  • Hou, Y., Lei, D., Li, S., Yang, W. and Li, C.-Q. 2016. Experimental Investigation on Corrosion Effect on Mechanical Properties of Buried Metal Pipes. International Journal of Corrosion, 5808372. http://dx.doi.org/10.1155/2016/5808372.
  • Liu, Z. Y., Li, Q., Cui, Z. Y., Wu, W., Li, Z., Du, C. W. & Li, X. G. 2017. Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments. Construction and Building Material, vol. 148, pp. 131-139. http://dx.doi.org/10.1016/j.conbuildmat.2017.05.058.
  • Niazi, H., Eadie, R., Chen, W., & Zhang, H. 2020. High pH stress corrosion cracking initiation and crack evolution in buried steel pipelines: A review. Engineering Failure Analysis, 105013. https://doi.org/10.1016/j.engfailanal.2020.105013.
  • Liu, G., Geng, J., Li, Y., Li, H., Wang, M., Chen, D., ... & Wang, H. 2021. Improved stress corrosion cracking resistance of in-situ TiB2/7050Al composite by pre-precipitation treatment. Micron, vol. 145, 103056. https://doi.org/10.1016/j.micron.2021.103056.
  • Fernandez, I., Bairán, J. M. & Marí, A. R. 2015. Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ–ε behavior. Construction and Building Material, vol. 101, pp. 772-783. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.139.
  • Sonsino, C. M. 2021. Consideration of Salt-Corrosion Fatigue for Lightweight Design and Proof of Aluminium Safety Components in Vehicle Applications. International Journal of Fatigue, 106406. https://doi.org/10.1016/j.ijfatigue.2021.106406.
  • Ghazizadeh, E., Jabbari, A. H. & Sedighi, M. 2021. In vitro corrosion-fatigue behavior of biodegradable Mg/HA composite in simulated body fluid. J. Magnes. Alloy. https://doi.org/10.1016/j.jma.2021.03.027.
  • Li, L., Mahmoodian, M. & Li, C. Q. 2018. Effect of corrosion on mechanical properties of steel bridge elements. In Proceedings of 9th International Conference on Bridge Maintenance Safety and Management.
  • Jebaraj, A. V., Aditya, K. V. V., Kumar, T. S., Ajaykumar, L. & Deepak, C. R. 2020. Mechanical and corrosion behaviour of aluminum alloy 5083 and its weldment for marine applications. Materials Today: Proceedings, vol. 22, pp. 1470-1478. https://doi.org/10.1016/j.matpr.2020.01.505.
  • Charalampidou, C., Dietzel, W., Zheludkevich, M., Kourkoulis, S. K. & Alexopoulos, N. D. 2021. Corrosion-induced mechanical properties degradation of Al-Cu-Li (2198-T351) aluminium alloy and the role of side-surface cracks. Corrosion Science, vol. 183, 109330. https://doi.org/10.1016/j.corsci.2021.109330.
  • Liu, M. 2021. Effect of uniform corrosion on mechanical behavior of E690 high strength steel lattice corrugated panel in marine environment: a finite element analysis. Material Research Express, vol. 8, 066510. https://doi.org/10.1088/2053-1591/ac0655.
  • Xu, L. Y. & Cheng, Y. F. 2012. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution. Corrosion Science, vol. 59, pp. 103-109. http://dx.doi.org/10.1016/j.corsci.2012.02.022.
  • Le, L., Sofi, M. & Lumantarna, E. 2021. The combined effect of stress and corrosion on mild steel. Journal of Constructional Steel Research vol. 185, 106805. https://doi.org/10.1016/j.jcsr.2021.106805.
  • Ren, R. K., Zhang, S., Pang, X. L. & Gao, K. W. 2012. A novel observation of the interaction between the macroelastic stress and electrochemical corrosion of low carbon steel in 3.5 wt% NaCl solution. Electrochimica Acta, vol. 85, pp. 283-294. http://dx.doi.org/10.1016/j.electacta.2012.08.079.
  • Necşulescu, D. A. 2011. The effects of corrosion on the mechanical properties of aluminium alloy 7075-T6. UPB Scientific Bulletin, vol. 73, pp. 223-229.
  • Kumar, S. R., Krishnaa, S. D., Krishna, M. D., Gokulkumar, N. T. & Akilesh, A. R. 2021. Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium. Materials Today: Proceedings, vol. 45, pp. 1878-1881. https://doi.org/10.1016/j.matpr.2020.09.079.
  • Hamidah, I., Solehudin, A., Hamdani, A., Hasanah, L., Khairurrijal, K., Kurniawan T., Mamt, R., Maryanti, R., Nandiyanto, A. & Hammouti, B. 2021. Corrosion of copper alloys in KOH, NaOH, NaCl, and HCl electrolyte solutions and its impact to the mechanical properties. Alexandria Engineering Journal, vol. 60(2), pp. 2235-2243. https://doi.org/10.1016/j.aej.2020.12.027.
  • Xu, S., Wang, H., Li, A., Wang, Y. & Su, L. 2016. Effects of corrosion on surface characterization and mechanical properties of butt-welded joints. Journal of Constructional Steel Research, vol. 126, pp. 50-62. http://dx.doi.org/10.1016/j.jcsr.2016.07.001.
  • Dovletoglou, E., Skarvelis, P., Stergiou, V. & Alexopoulos, N. D. 2018. Effect of corrosion exposure on the mechanical performance of 2024 aluminum alloy electron beam welded joints. Procedia Structural Integrity, vol. 10, pp. 73-78. https://doi.org/10.1016/j.prostr.2018.09.011.
  • Rajput, A., Paik, J. K. 2021. Effects of Naturally-Progressed Corrosion on the Chemical and Mechanical Properties of Structural Steels. Structures, vol. 29, pp. 2120-2138. https://doi.org/10.1016/j.istruc.2020.06.014.
  • Mishra, R. K. 2020. Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Materials Today: Proceedings, vol. 25, pp. 602-609. https://doi.org/10.1016/j.matpr.2019.07.375.
  • Garbatov, Y., Soares, C. G., Parunov, J. & Kodvanj, J. 2014. Tensile strength assessment of corroded small scale specimens. Corrosion Science, vol. 85, pp. 296-303. http://dx.doi.org/10.1016/j.corsci.2014.04.031.
  • Belkessa B., Giroud D., Ouali N., Cheniti B. Microstructure and Mechanical Behavior in Dissimilar SAF 2205/API X52 Welded Pipes. Acta Metallurgical Sinica (English Letters), 2016. https://doi.org/10.1007/s40195-016-0428-8.
  • Young G. W. 2012. Evaluation of Friction Stir Processing Of HY-80 Steel under Wet and Dry Condition. Naval Postgraduate School. Master’s Thesis. Monterey, California.
  • Zhang L., Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel, Materials Science and Engineering A 613, pp. 326-335, 2014. https://doi.org/doi:10.1016/j.msea.2014.06.106.
  • Institute of Turkish Standards, Metallic materials – Tensile testing, part 1: method of test at room temperature.
  • Institute of Turkish Standards, Metallic materials, Charpy pendulum impact test, part 1: test method.
  • Marcus, P. 2011. Corrosion mechanisms in theory and practice. Crc Press.
  • Revie, R. W. 2008. Corrosion and corrosion control. John Wiley & Sons.
  • Davis, J. R. 2004. Tensile Testing, ASM International, USA.
  • Anonim, Bartın Üniversitesi Mühendislik Fakültesi Metalurji ve Malzeme Mühendisliği Malzeme Laboratuarı I dersi çekme föyü. https://cdn.bartin.edu.tr/metalurji/d7ee7cd9-f063-4669-8e1c-393503ed6ffb/cekme-deney-foyu.pdf (date of access:08.08.2023)
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Buğra Yılmaz 0000-0002-6845-0951

Ergin Kosa 0000-0002-4607-4115

Şenol Durmuşoğlu 0000-0003-3232-8484

Erken Görünüm Tarihi 14 Mayıs 2024
Yayımlanma Tarihi 27 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 77

Kaynak Göster

APA Yılmaz, B., Kosa, E., & Durmuşoğlu, Ş. (2024). An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(77), 248-254. https://doi.org/10.21205/deufmd.2024267708
AMA Yılmaz B, Kosa E, Durmuşoğlu Ş. An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums. DEUFMD. Mayıs 2024;26(77):248-254. doi:10.21205/deufmd.2024267708
Chicago Yılmaz, Buğra, Ergin Kosa, ve Şenol Durmuşoğlu. “An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, sy. 77 (Mayıs 2024): 248-54. https://doi.org/10.21205/deufmd.2024267708.
EndNote Yılmaz B, Kosa E, Durmuşoğlu Ş (01 Mayıs 2024) An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 77 248–254.
IEEE B. Yılmaz, E. Kosa, ve Ş. Durmuşoğlu, “An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums”, DEUFMD, c. 26, sy. 77, ss. 248–254, 2024, doi: 10.21205/deufmd.2024267708.
ISNAD Yılmaz, Buğra vd. “An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/77 (Mayıs 2024), 248-254. https://doi.org/10.21205/deufmd.2024267708.
JAMA Yılmaz B, Kosa E, Durmuşoğlu Ş. An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums. DEUFMD. 2024;26:248–254.
MLA Yılmaz, Buğra vd. “An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 26, sy. 77, 2024, ss. 248-54, doi:10.21205/deufmd.2024267708.
Vancouver Yılmaz B, Kosa E, Durmuşoğlu Ş. An Experimental Investigation of Mechanical Behavior of HY 80 Steel in Corrosive Mediums. DEUFMD. 2024;26(77):248-54.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.