Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of a Mathematical Model of a Membrane Reactor for Hydrogen Production and CO2 Capture in Same Device

Yıl 2024, Cilt: 26 Sayı: 77, 307 - 315, 27.05.2024
https://doi.org/10.21205/deufmd.2024267715

Öz

Hydrogen, an essential element for a sustainable future, plays an important role in the global energy and environmental challenges. One of the prominent methods for hydrogen production is steam methane reforming (SMR) from hydrocarbons, which offers high efficiency and scalability. Membrane reactors (MRs) have emerged as a promising technology for enhancing the SMR process by integrating hydrogen production and separation within a single unit. The novelty of this study deals with the application and mathematical modeling for the first time of both hydrogen production via steam methane reforming, and carbon dioxide capture in the same MR. The effects of two important operating parameters (reaction temperature and reaction pressure) on the MR performance are investigated parametrically. At the baseline simulation conditions (773 K and 3 bar), methane conversion, hydrogen recovery, and carbon dioxide recovery are equal to 32.43%, 61.78%, and 15.69%, respectively.

Kaynakça

  • Acar, C., Dincer, I. 2020. The potential role of hydrogen as a sustainable transportation fuel to combat global warming, International Journal of Hydrogen Energy, Cilt. 45, No. 5, s. 3396-3406, DOI: 10.1016/j.ijhydene.2018.10.149
  • Cho, H. H., Strezov, V., Evans, T. J. 2023. A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies, Sustainable Materials and Technologies, Cilt. 35, e00567, DOI: 10.1016/j.susmat.2023.e00567
  • Amiri, T. Y., Ghasemzageh, K., Iulianelli, A. 2020. Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review. Chemical Engineering and Processing-Process Intensification, Cilt. 157, 108148, DOI: 10.1016/j.cep.2020.108
  • Nalbant Atak, Y., Colpan, C. O., Iulianelli, A. 2021. A review on mathematical modeling of packed bed membrane reactors for hydrogen production from methane. International Journal of Energy Research, Cilt. 45, No. 15, s. 20601-20633, DOI: 10.1002/er.7186
  • Drioli, E., Stankiewicz, A.I., Macedonio, F. 2011. Membrane engineering in process intensification—An overview. Journal of Membrane Science, Cilt. 380, No. 1-2, s. 1-8, DOI: 10.1016/j.memsci.2011.06.043
  • Wassie, S. A., Medrano, J. A., Zaabout, A., Cloete, S., Melendez, J., Tanaka, D. A. P., Amini, S., Annaland, M. v. S.A., and Gallucci, F. 2018. Hydrogen production with integrated CO2 capture in a membrane assisted gas switching reforming reactor: proof-of-Concept. International Journal of Hydrogen Energy, Cilt. 43, No. 12, s. 6177-6190, DOI: 10.1016/j.ijhydene.2018.02.040
  • Elavarasan, R. M., Pugazhendhi, Irfan, R., Mihet-Popa, M., L., Khan, I. A., Campana, P. E. 2022. State-of-the-art sustainable approaches for deeper decarbonization in Europe–An endowment to climate neutral vision. Renewable and Sustainable Energy Reviews, Cilt. 159, 112204, DOI: 10.1016/j.rser.2022.112204
  • Patel, K. S., Sunol, A. K. 2007. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. International Journal of Hydrogen Energy, Cilt. 32, No.13, s. 2344-2358, DOI: 10.1016/j.ijhydene.2007.03.004
  • Di Marcoberardino, G., Sosio, F., Manzolini, G., Campanari, S. 2015. Fixed bed membrane reactor for hydrogen production from steam methane reforming: Experimental and modeling approach. International Journal of Hydrogen Energy, Cilt. 40, No.24, s. 7559-7567, DOI: 10.1016/j.ijhydene.2014.11.045
  • Alavi, M., Eslamloueyan, R., Rahimpour, M. R. 2018. Multi objective optimization of a methane steam reforming reaction in a membrane reactor: considering the potential catalyst deactivation due to the hydrogen removal. International Journal of Chemical Reactor Engineering, Cilt. 16, No. 2, 20170066, DOI: 10.1515/ijcre-2017-0066
  • Cruz, B. M., da Silva, J. D. 2017. A two-dimensional mathematical model for the catalytic steam reforming of methane in both conventional fixed-bed and fixed-bed membrane reactors for the Production of hydrogen. International Journal of Hydrogen Energy, Cilt. 42, No. 37, s. 23670-23690, DOI: 10.1016/j.ijhydene.2017.03.019
  • Ghasemzadeh, K., Liguori, S., Morrone, P., Iulianelli, A., Piemonte, V., Babaluo, A. A., Basile, A. 2013. H2 production by low pressure methanol steam reforming in a dense Pd–Ag membrane reactor in co-current flow configuration: experimental and modeling analysis. International journal of hydrogen energy, Cilt. 38, No. 36, s. 16685-16697, DOI: 10.1016/j.ijhydene.2013.06.008
  • Kian, K., Liguori, S., Pilorgé, H., Crawford, J. M., Carreon, M. A., Martin, J. L., Grimm, R.L., and Wilcox, J. 2021. Prospects of CO2 capture via 13X for low-carbon hydrogen production using a Pd-based metallic membrane reactor. Chemical Engineering Journal, Cilt. 407, 127224, DOI: 10.1016/j.cej.2020.127224
  • Shirasaki, Y., Yasuda, I. 2013. Membrane reactor for hydrogen production from natural gas at the Tokyo Gas Company: A case study. In Handbook of Membrane Reactors, Woodhead Publishing, s. 487-507.
  • Atak, Y. N., Colpan, C. O., Iulianelli, A. 2022. Energy and exergy analyses of an integrated membrane reactor and CO2 capture system to generate decarbonized hydrogen. Energy Conversion and Management, Cilt. 272, 116367, DOI: 10.1016/j.enconman.2022.116367
  • Ovalle-Encinia, O., Wu, H. C., Chen, T., Lin, J. Y. 2022. CO2-permselective membrane reactor for steam reforming of methane. Journal of Membrane Science, Cilt. 641, 119914, DOI: 10.1016/j.memsci.2021.119914
  • Xu, J., Froment, G. F. 1989. Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics. AIChE journal, Cilt. 35, No. 1, s. 88-96, DOI: 10.1002/aic.690350109
  • Norton, T. T., Lu, B., Lin, Y. S. 2014. Carbon dioxide permeation properties and stability of samarium-doped-ceria carbonate dual-phase membranes. Journal of membrane science, Cilt. 467, s. 244-252, DOI: 10.1016/j.memsci.2014.05.026
  • Dong, X., Wu, H. C., Lin, Y. S. 2018. CO2 permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes. Journal of Membrane Science, Cilt. 564, s. 73-81, DOI: 10.1016/j.memsci.2018.07.012

Hidrojen Üretimi ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi

Yıl 2024, Cilt: 26 Sayı: 77, 307 - 315, 27.05.2024
https://doi.org/10.21205/deufmd.2024267715

Öz

Sürdürülebilir bir gelecek için temel bir unsur olan hidrojen, küresel enerji ve çevresel zorluklarda önemli bir rol oynamaktadır. Hidrojen üretimi için öne çıkan yöntemlerden biri, yüksek verimlilik ve ölçeklenebilirlik sunan hidrokarbonlardan buhar metan reformasyonudur (BMR). Membran reaktörler (MR’ler), hidrojen üretimini ve ayrılmasını tek bir ünite içinde entegre ederek BMR sürecini geliştirmek için umut verici bir teknoloji olarak ortaya çıkmıştır. Bu çalışma, bir MR içerisinde hem BMR ile hidrojen üretimini hem de membrandan geçemeyen gazlardan karbondioksit yakalanmasını içeren iki farklı prosesi içermektir ve bu MR’nin 1-boyutlu matematiksel modeli oluşturulmuştur. İki önemli çalışma parametresinin (reaksiyon sıcaklığı ve reaksiyon basıncı) membran reaktör performansı üzerindeki etkileri parametrik olarak incelenmiştir. Temel simülasyon koşullarında (773 K ve 3 bar), metan dönüşümü, hidrojen geri kazanımı, karbondioksit geri kazanımı sırasıyla %32,43, %61,78 ve %15,69'a eşittir.

Kaynakça

  • Acar, C., Dincer, I. 2020. The potential role of hydrogen as a sustainable transportation fuel to combat global warming, International Journal of Hydrogen Energy, Cilt. 45, No. 5, s. 3396-3406, DOI: 10.1016/j.ijhydene.2018.10.149
  • Cho, H. H., Strezov, V., Evans, T. J. 2023. A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies, Sustainable Materials and Technologies, Cilt. 35, e00567, DOI: 10.1016/j.susmat.2023.e00567
  • Amiri, T. Y., Ghasemzageh, K., Iulianelli, A. 2020. Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review. Chemical Engineering and Processing-Process Intensification, Cilt. 157, 108148, DOI: 10.1016/j.cep.2020.108
  • Nalbant Atak, Y., Colpan, C. O., Iulianelli, A. 2021. A review on mathematical modeling of packed bed membrane reactors for hydrogen production from methane. International Journal of Energy Research, Cilt. 45, No. 15, s. 20601-20633, DOI: 10.1002/er.7186
  • Drioli, E., Stankiewicz, A.I., Macedonio, F. 2011. Membrane engineering in process intensification—An overview. Journal of Membrane Science, Cilt. 380, No. 1-2, s. 1-8, DOI: 10.1016/j.memsci.2011.06.043
  • Wassie, S. A., Medrano, J. A., Zaabout, A., Cloete, S., Melendez, J., Tanaka, D. A. P., Amini, S., Annaland, M. v. S.A., and Gallucci, F. 2018. Hydrogen production with integrated CO2 capture in a membrane assisted gas switching reforming reactor: proof-of-Concept. International Journal of Hydrogen Energy, Cilt. 43, No. 12, s. 6177-6190, DOI: 10.1016/j.ijhydene.2018.02.040
  • Elavarasan, R. M., Pugazhendhi, Irfan, R., Mihet-Popa, M., L., Khan, I. A., Campana, P. E. 2022. State-of-the-art sustainable approaches for deeper decarbonization in Europe–An endowment to climate neutral vision. Renewable and Sustainable Energy Reviews, Cilt. 159, 112204, DOI: 10.1016/j.rser.2022.112204
  • Patel, K. S., Sunol, A. K. 2007. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. International Journal of Hydrogen Energy, Cilt. 32, No.13, s. 2344-2358, DOI: 10.1016/j.ijhydene.2007.03.004
  • Di Marcoberardino, G., Sosio, F., Manzolini, G., Campanari, S. 2015. Fixed bed membrane reactor for hydrogen production from steam methane reforming: Experimental and modeling approach. International Journal of Hydrogen Energy, Cilt. 40, No.24, s. 7559-7567, DOI: 10.1016/j.ijhydene.2014.11.045
  • Alavi, M., Eslamloueyan, R., Rahimpour, M. R. 2018. Multi objective optimization of a methane steam reforming reaction in a membrane reactor: considering the potential catalyst deactivation due to the hydrogen removal. International Journal of Chemical Reactor Engineering, Cilt. 16, No. 2, 20170066, DOI: 10.1515/ijcre-2017-0066
  • Cruz, B. M., da Silva, J. D. 2017. A two-dimensional mathematical model for the catalytic steam reforming of methane in both conventional fixed-bed and fixed-bed membrane reactors for the Production of hydrogen. International Journal of Hydrogen Energy, Cilt. 42, No. 37, s. 23670-23690, DOI: 10.1016/j.ijhydene.2017.03.019
  • Ghasemzadeh, K., Liguori, S., Morrone, P., Iulianelli, A., Piemonte, V., Babaluo, A. A., Basile, A. 2013. H2 production by low pressure methanol steam reforming in a dense Pd–Ag membrane reactor in co-current flow configuration: experimental and modeling analysis. International journal of hydrogen energy, Cilt. 38, No. 36, s. 16685-16697, DOI: 10.1016/j.ijhydene.2013.06.008
  • Kian, K., Liguori, S., Pilorgé, H., Crawford, J. M., Carreon, M. A., Martin, J. L., Grimm, R.L., and Wilcox, J. 2021. Prospects of CO2 capture via 13X for low-carbon hydrogen production using a Pd-based metallic membrane reactor. Chemical Engineering Journal, Cilt. 407, 127224, DOI: 10.1016/j.cej.2020.127224
  • Shirasaki, Y., Yasuda, I. 2013. Membrane reactor for hydrogen production from natural gas at the Tokyo Gas Company: A case study. In Handbook of Membrane Reactors, Woodhead Publishing, s. 487-507.
  • Atak, Y. N., Colpan, C. O., Iulianelli, A. 2022. Energy and exergy analyses of an integrated membrane reactor and CO2 capture system to generate decarbonized hydrogen. Energy Conversion and Management, Cilt. 272, 116367, DOI: 10.1016/j.enconman.2022.116367
  • Ovalle-Encinia, O., Wu, H. C., Chen, T., Lin, J. Y. 2022. CO2-permselective membrane reactor for steam reforming of methane. Journal of Membrane Science, Cilt. 641, 119914, DOI: 10.1016/j.memsci.2021.119914
  • Xu, J., Froment, G. F. 1989. Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics. AIChE journal, Cilt. 35, No. 1, s. 88-96, DOI: 10.1002/aic.690350109
  • Norton, T. T., Lu, B., Lin, Y. S. 2014. Carbon dioxide permeation properties and stability of samarium-doped-ceria carbonate dual-phase membranes. Journal of membrane science, Cilt. 467, s. 244-252, DOI: 10.1016/j.memsci.2014.05.026
  • Dong, X., Wu, H. C., Lin, Y. S. 2018. CO2 permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes. Journal of Membrane Science, Cilt. 564, s. 73-81, DOI: 10.1016/j.memsci.2018.07.012
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yenilenebilir Enerji Sistemleri, Karbon Yakalama Mühendisliği (Sekestrasyon/Ayırma) Hariç), Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Makaleler
Yazarlar

Yağmur Nalbant Atak 0000-0002-1708-5958

Erken Görünüm Tarihi 14 Mayıs 2024
Yayımlanma Tarihi 27 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 77

Kaynak Göster

APA Nalbant Atak, Y. (2024). Hidrojen Üretimi ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(77), 307-315. https://doi.org/10.21205/deufmd.2024267715
AMA Nalbant Atak Y. Hidrojen Üretimi ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi. DEUFMD. Mayıs 2024;26(77):307-315. doi:10.21205/deufmd.2024267715
Chicago Nalbant Atak, Yağmur. “Hidrojen Üretimi Ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, sy. 77 (Mayıs 2024): 307-15. https://doi.org/10.21205/deufmd.2024267715.
EndNote Nalbant Atak Y (01 Mayıs 2024) Hidrojen Üretimi ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 77 307–315.
IEEE Y. Nalbant Atak, “Hidrojen Üretimi ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi”, DEUFMD, c. 26, sy. 77, ss. 307–315, 2024, doi: 10.21205/deufmd.2024267715.
ISNAD Nalbant Atak, Yağmur. “Hidrojen Üretimi Ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/77 (Mayıs 2024), 307-315. https://doi.org/10.21205/deufmd.2024267715.
JAMA Nalbant Atak Y. Hidrojen Üretimi ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi. DEUFMD. 2024;26:307–315.
MLA Nalbant Atak, Yağmur. “Hidrojen Üretimi Ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 26, sy. 77, 2024, ss. 307-15, doi:10.21205/deufmd.2024267715.
Vancouver Nalbant Atak Y. Hidrojen Üretimi ve CO2 Yakalanmasını Aynı Cihazda Sağlayan Bir Membran Reaktörün Matematiksel Modelinin Geliştirilmesi. DEUFMD. 2024;26(77):307-15.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.