Araştırma Makalesi
BibTex RIS Kaynak Göster

Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi

Yıl 2024, Cilt: 26 Sayı: 78, 398 - 414

Öz

Bu çalışmada CA (%100 Cu-Al2O3), CNZA15 (%85 Cu-Al2O3+%15 Ni-Zn-Al2O3), CNZA30 (%70 Cu-Al2O3+%30 Ni-Zn-Al2O3) ve CZA (%100 Cu-Zn-Al2O3) olmak üzere 4 farklı kompozisyondaki kaplama tozu kullanılarak farklı kalınlıklardaki Cu esaslı metal matris kompozit (MMK) kaplamalar düşük basınç soğuk dinamik gaz püskürtme (SDGP) prosesi ile 7075 alüminyum alaşımı (AA) üzerinde üretilmiş, kompozisyon ve kalınlığın kaplamaların mikrobiyolojik korozyon davranışları üzerindeki etkisi araştırılmıştır. X-ışını difraksiyonu (XRD) paternleri ile kaplama tozları ve bu tozlardan üretilen kaplamaların benzer faz içeriklerine sahip olduğu bulunmuştur. Ayrıca kaplama prosesi esnasında tozların yüksek sıcaklıklara (T>~300°C) maruz kalmadığı ve termal etkinin herhangi bir faz dönüşümüne neden olmadığı sonucu ortaya çıkarılmış ve enerji dağıtıcı X-ışını spektrometresi (EDS) ile donatılmış taramalı elektron mikroskobu (SEM) kullanılarak doğrulanmıştır. Diğer taraftan optik mikroskop (OM) ve SEM analizleri ile kaplama mikroyapılarında baskın metal matrisin bakır olduğu ve Al2O3 partiküllerinin metal matrisine homojen bir şekilde dağıldığı tespit edilmiştir. Mikrobiyolojik korozyon testleri bir Gram-negatif bakteri olan Pseudomonas aeruginosa ve bir küf türü olan Aspergillus niger referans strainleri kullanılarak gerçekleştirilmiştir. İnkübasyon süresi sonunda en etkili antibakteriyel ve antifungal etkiyi CZA kaplamaları göstermiştir. Ayrıca CZA kaplamaları için Aspergillus niger ortamında inhibisyon zonu tespit edilmiş ve zon çapı 7 mm olarak ölçülmüştür. Sonuçlar kaplamaların mikrobiyolojik korozyon davranışları üzerinde kompozisyonun etkili olduğunu ve hem bakteri hem de küf ortamında CZA kaplamalarının başarılı sonuçlar ortaya çıkaracağını göstermiştir.

Kaynakça

  • [1] Cagan, S. C., Venkatesh, B., & Buldum, B. B. 2020. Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings, 27(2), 1122-1126. DOI: 10.1016/j.matpr.2020.01.547
  • [2] Rambabu, P., Prasad, N. E., Kutumbarao, V. V., & Wanhill, R. J. H. 2017. Aluminium Alloys for Aerospace Applications. In Advances in Metallic Alloys (pp. 29–52). Springer. DOI: 10.1007/978-981-10-2134-3_2
  • [3] Zhou, B., Liu, B., & Zhang, S. 2021. The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review. Metals, 11(5), 718, 1-29. DOI:10.3390/met11050718
  • [4] Venugopal, A., Panda, R. P., Manwatkar, S., Sreekumar, K., Ramakrishna, L., & Sundararajan, G. 2012. Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution. Trans. Nonferrous Met. Soc. China, 22, 700-710. DOI: 10.1016/S1003-6326(11)61234-X
  • [5] Chateauneuf, A., Cocheteux, F., Deffarges, F., & Sourget, F. 2011. Reliability analysis of screwed connections in high-speed trains, considering fatigue, corrosion, and imperfect maintenance operations. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 225, 293-306. DOI: 10.1177/1748006x11402738
  • [6] Shi, T., Liang, J., Li, X., Zhang, C., & Yang, H. 2022. Improving the Corrosion Resistance of Aluminum Alloy by Creating a Superhydrophobic Surface Structure through a Two-Step Process of Etching Followed by Polymer Modification. Polymers, 14, 4509. DOI: 10.3390/polym14214509
  • [7] Nelson, V.V., Maria, O.T., Mamiè, S.V., Maritza, P.C. 2017. Microbiologically influenced corrosion in aluminium alloys 7075 and 2024, in Aluminium Alloys-Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. IntechOpen, 12, 225–242. DOI: 10.5772/intechopen.70735
  • [8] Vaughn-Thomas, D. M. 2011. Microbial Influenced Corrosion: Role of Bacterial Attachment and Biofilm. Honors Project 4200:497, 1-21.
  • [9] Rawat, J., Khandelwal, A., Sharma, N., & Tyagi, S. 2016. Effect of Sulphate Reducing Bacterial-Biofilm Isolated from Refinery Cooling Water System and Sonication on Corrosion of Carbon Steel. Journal of Materials and Environmental Science, 7(1), 362-370.
  • [10] Dursun, T., & Soutis, C. 2014. Review: Recent developments in advanced aircraft aluminium alloys. Materials & Design, 56, 862–871. DOI: 10.1016/j.matdes.2013.12.002
  • [11] Smith, R. N. 1991. Developments in fuel microbiology. Biodeterioration and Biodegradation, 8, 112-124.
  • [12] Ayllon, E. S., & Rosales, B. M. 1988. Corrosion of AA7075 Aluminium Alloy in Media Contaminated with Cladosporium resinae. Corrosion Science, 44(9), 638–643. DOI: 10.5006/1.3584977
  • [13] Muthukumar, N., Rajasekar, A., Ponmarriappan, S., Mohanan, S., Maruthamuthu, S., Muralidharan, S., Subramanian, P., Palaniswamy, N., & Raghavan, M. 2003. Microbiologically Influenced Corrosion in Petroleum Product Pipelines—A Review. Indian Journal of Experimental Biology, 41(11), 1012-1022.
  • [14] Dexter, S. C. 2003. Microbiologically influenced corrosion. In Corrosion: Fundamentals, Testing and Protection, ASM Handbook (Vol. 13, p. 398). ASM International.
  • [15] da Silva Savonov, G., Camarinha, M. G. G., Rocha, L. O., Barboza, M. J. R., Martins, G. V., Reis, D. A. P. 2019. Study of the influence of the RRA thermal treatment and plasma nitriding on corrosion behavior of 7075-T6 aluminum alloy. Surface & Coatings Technology, 374, 736-744. DOI: 10.1016/j.surfcoat.2019.04.095
  • [16] Abdel-Gawad, S. A., Sadik, M. A., Shoeib, M. A. 2019. Preparation and properties of a novel nano Ni-B-Sn by electroless deposition on 7075-T6 aluminum alloy for aerospace application. Journal of Alloys and Compounds, 785, 1284-1292. DOI: 10.1016/j.jallcom.2019.01.245
  • [17] Xu, L., Wang, R., Gen, M., Lu, L., & Han, G. 2019. Preparation and properties of graphene/nickel composite coating based on textured surface of aluminum alloy. Materials, 12. DOI: 10.3390/ma12193240
  • [18] Ding, Z. 2019. Mechanistic study of thin film sulfuric acid anodizing rate difference between Al2024 T3 and Al6061 T6. Surface & Coatings Technology, 357, 280-288. DOI: 10.1016/j.surfcoat.2018.09.083
  • [19] Suzuki, R. O., Natsui, S., Nishinaga, O., Nakajima, D., & Kikuchi, T. 2015. Porous aluminum oxide formed by anodizing in various electrolyte species. Current Nanoscience,11. DOI: 10.2174/1573413711999150608144742
  • [20] Bashir, M. I., Shafiq, M., Naeem, M., Zaka-ul-Islam, M., Díaz-Guillén, J. C., Lopez-Badillo, C. M., & Zakaullah, M. 2017. Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding. Surface & Coatings Technology, 327, 59-65. DOI: 10.1016/j.surfcoat.2017.07.036
  • [21] Wu, L. K., Liu, L., Li, J., Hu, J. M., Zhang, J. Q., & Cao, C. N. 2010. Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection. Surface & Coatings Technology, 204, 3920–3926. DOI: 10.1016/j.surfcoat.2010.05.027
  • [22] Diggle, J. W., Downie, T. C., & Goulding, C. W. 1969. Anodic oxide films on aluminum. Chemical Reviews, 3, 365–405.
  • [23] Masuda, H., & Fukuda, K. 1995. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268, 1466–1468.
  • [24] Hwang, S., Jeong, S., Hwang, H., Lee, O., & Lee, K. 2002. Fabrication of highly ordered pore array in anodic aluminum oxide. Korean Journal of Chemical Engineering, 19, 467–473.
  • [25] Naimi, A., Yousfi, H., & Trari, M. 2012. Microstructure and corrosion resistance of molybdenum and aluminum coatings thermally sprayed on 7075-T6 aluminum alloy. Protection of Metals and Physical Chemistry of Surfaces, 48(5), 557–562. DOI: 10.1134/S2070205112050061
  • [26] Li, Y.-X., Zhang, P.-F., Bai, P.-K., Zhao, Z.-Y., & Liu, B. 2018. Analysis of geometrical characteristics and properties of laser cladding 85 wt.% Ti + 15 wt.% TiBCN powder on 7075 aluminum alloy substrate. Materials, 11(9), 1551-1561. DOI: 10.3390/ma11091551
  • [27] Da Silva, M. D., Partes, K., Seefeld, T., & Vollertsen, F. 2012. Comparison of coaxial and off-axis nozzle configurations in one-step process laser cladding on aluminum substrate. Journal of Materials Processing Technology, 212, 2514–2519. DOI: 10.1016/j.jmatprotec.2012.06.011
  • [28] Birbilis, N., & Hinton, B. 2011. Corrosion and corrosion protection of aluminium. In Fundamentals of Aluminium Metallurgy (pp. 574–604).
  • [29] Alkhimov, A. P., Kosarev, V. F., & Papyrin, A. N. 1990. Method of cold gas-dynamic deposition. Doklady Akademii Nauk SSSR, 315, 1062–1065 (Translated by American Institute of Physics, 1991).
  • [30] Papyrin, A., Kosarev, V. F., Klinkov, S., Alkhimov, A., & Vasily, F. 2007. Cold Spray Technology (1st ed.). Elsevier: Oxford, UK.
  • [31] Villafuerte, J. 2005. Cold Spray: A New Technology. Welding Journal, 84(5), 25-29.
  • [32] Ghosh, M., Roy, A., Ghosh, A., Kumar, H., & Saha, G. 2020. Antibacterial and antimicrobial coatings on metal substrates by cold spray technique: Present and future perspectives. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design (pp. 15–45). Elsevier: Amsterdam, The Netherlands.
  • [33] Champagne, V. K., & Helfritch, D. J. 2013. A demonstration of the antimicrobial effectiveness of various copper surfaces. Journal of Biological Engineering, 7, 8.
  • [34] Jing, H., Yu, Z., & Li, L. 2007. Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials. Wiley InterScience, 33–37. DOI: 10.1002/jbm.a.31688
  • [35] Wrona, A., Bilewska, K., Lis, M., Kamińska, M., Olszewski, T., Pajzderski, P., Więcław, G., Jaśkiewicz, M., Kamysz, W. 2017. Antimicrobial properties of protective coatings produced by plasma spraying technique. Surface & Coatings Technology, 318, 332–340. DOI: 10.1016/j.surfcoat.2017.01.101
  • [36] Sanpo, N., Saraswati, T., Lu, T. M., & Cheang, P. 2008. Anti-bacterial property of cold sprayed ZnOAl coating. In 2008 International Conference on BioMedical Engineering and Informatics (Vol. 1, pp. 488–491). DOI: 10.1109/BMEI.2008.291
  • [37] Sanpo, N., & Tharajak, J. 2017. Antimicrobial property of cold-sprayed transition metals-substituted hydroxyapatite/PEEK coating. Applied Mechanics and Materials, 866, 77–80. DOI: 10.4028/www.scientific.net/AMM.866.77
  • [38] Sanpo, N., Hailan, C., Loke, K., Keng, K. P., Cheang, P., Berndt, C. C., Khor, K. A. 2010. Biocompatibility and antibacterial property of cold sprayed ZnO/titanium composite coating. In A. Mendez-Vilas (Ed.), Science and Technology against Microbial Pathogens: Research, Development and Evaluation (pp. 140-144). Proceedings of the International Conference on Antimicrobial Research, World Scientific. DOI: 10.1142/9789814354868_0027
  • [39] Sundberg, K., Wang, Y., Mishra, B., Carl, A. D., Grimm, R. L., Te, A., Lozeau, L., Sousa, B. C., Sisson, R. D., & Cote, D. L. 2019. The Effect of Corrosion on Conventional and Nanomaterial Copper Cold Spray Surfaces for Antimicrobial Applications. Biomedical Journal of Scientific & Technical Research, 22. DOI: 10.26717/BJSTR.2019.22.003768
  • [40] Graef, H. W. 2003. An Analysis of Microbial Contamination in Military Aviation Fuel Systems (Doctoral dissertation). Air University.
  • [41] Moridi, A., Gangaraj, S. M. H., Vezzu, S., & Guagliano, M. 2014. Number of Passes and Thickness Effect on Mechanical Characteristics of Cold Spray Coating. Procedia Engineering, 74, 449-459. DOI: 10.1016/j.proeng.2014.06.296
  • [42] Xiong, Y., Zhuang, W., & Zhang, M. 2015. Effect of the thickness of cold-sprayed aluminium alloy coating on the adhesive bond strength with an aluminium alloy substrate. Surface & Coatings Technology, 270, 259–265. DOI: 10.1016/j.surfcoat.2015.02.048
  • [43] Chen, H., Liu, C., Chu, X., Zhang, T., & Zheng, J. 2022. Corrosion Behavior and Microstructure of Cu-Based Composite Coatings Deposited by Cold Spraying. Metals, 12, 955. DOI: 10.3390/met12060955
  • [44] Zhang, L., Yang, S., Lv, X., & Jie, X. 2019. Wear and corrosion resistance of cold-sprayed Cu-Based composite coatings on magnesium substrate. Journal of Thermal Spray Technology, 28(6), 1212–1224. DOI: 10.1007/s11666-019-00887-9
  • [45] Gudkov, S. V., Burmistrov, D. E., Smirnova, V. V., Semenova, A. A., & Lisitsyn, A. B. 2022. A Mini Review of Antibacterial Properties of Al2O3 Nanoparticles. Nanomaterials, 12, 2635. DOI: 10.3390/nano12152635
  • [46] Pasquet, J., Chevalier, Y., Pelletier, J., Couval, E., Bouvier, D., & Bolzinger, M. A. 2014. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 263–274. DOI: 10.1016/j.colsurfa.2014.05.057

Investigation of Corrosion Behavior of Cu-based Metal Matrix Composite Coatings in Pseudomonas Aeruginosa and Aspergillus Niger Environments

Yıl 2024, Cilt: 26 Sayı: 78, 398 - 414

Öz

In this study, Cu-based metal matrix composite (MMC) coatings of different thicknesses were produced on 7075 aluminum alloy (AA) by low pressure cold gas dynamic spray (CGDS) process, using coating powders in four different compositions: CA (100% Cu-Al2O3), CNZA15 (85% Cu-Al2O3+15% Ni-Zn-Al2O3), CNZA30 (70% Cu-Al2O3+30% Ni-Zn-Al2O3) and CZA (100% Cu-Zn-Al2O3). The study aimed to investigate the effects of coating composition and thickness on the microbiological corrosion behavior of coatings. X-ray diffraction (XRD) patterns show that the phase contents of the coating powder and the coating produced with the same powder are similar to each other. It was also concluded that the powders were not exposed to high temperatures (T>~300°C) during the coating process and the thermal effect did not cause any phase transformation, and this was confirmed using a scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). Optical microscope (OM) and SEM analyzes determined that the dominant metal matrix in the coating microstructures was copper and Al2O3 particles were homogeneously distributed in the metal matrix. Microbiological corrosion tests were performed using Pseudomonas aeruginosa and Aspergillus niger reference strains. The results obtained at the end of the incubation period demonstrate that CZA coatings show effective antibacterial activity against bacteria and also provide an antifungal effect by preventing fungus formation. Additionally, an inhibition zone was detected in Aspergillus niger medium for CZA coatings and the zone diameter was measured to be 7 mm. These findings indicate that the composition is effective on the microbiological corrosion behavior of coatings and that CZA coatings, in particular, achieve successful results against both bacteria and fungus.

Kaynakça

  • [1] Cagan, S. C., Venkatesh, B., & Buldum, B. B. 2020. Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings, 27(2), 1122-1126. DOI: 10.1016/j.matpr.2020.01.547
  • [2] Rambabu, P., Prasad, N. E., Kutumbarao, V. V., & Wanhill, R. J. H. 2017. Aluminium Alloys for Aerospace Applications. In Advances in Metallic Alloys (pp. 29–52). Springer. DOI: 10.1007/978-981-10-2134-3_2
  • [3] Zhou, B., Liu, B., & Zhang, S. 2021. The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review. Metals, 11(5), 718, 1-29. DOI:10.3390/met11050718
  • [4] Venugopal, A., Panda, R. P., Manwatkar, S., Sreekumar, K., Ramakrishna, L., & Sundararajan, G. 2012. Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution. Trans. Nonferrous Met. Soc. China, 22, 700-710. DOI: 10.1016/S1003-6326(11)61234-X
  • [5] Chateauneuf, A., Cocheteux, F., Deffarges, F., & Sourget, F. 2011. Reliability analysis of screwed connections in high-speed trains, considering fatigue, corrosion, and imperfect maintenance operations. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 225, 293-306. DOI: 10.1177/1748006x11402738
  • [6] Shi, T., Liang, J., Li, X., Zhang, C., & Yang, H. 2022. Improving the Corrosion Resistance of Aluminum Alloy by Creating a Superhydrophobic Surface Structure through a Two-Step Process of Etching Followed by Polymer Modification. Polymers, 14, 4509. DOI: 10.3390/polym14214509
  • [7] Nelson, V.V., Maria, O.T., Mamiè, S.V., Maritza, P.C. 2017. Microbiologically influenced corrosion in aluminium alloys 7075 and 2024, in Aluminium Alloys-Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. IntechOpen, 12, 225–242. DOI: 10.5772/intechopen.70735
  • [8] Vaughn-Thomas, D. M. 2011. Microbial Influenced Corrosion: Role of Bacterial Attachment and Biofilm. Honors Project 4200:497, 1-21.
  • [9] Rawat, J., Khandelwal, A., Sharma, N., & Tyagi, S. 2016. Effect of Sulphate Reducing Bacterial-Biofilm Isolated from Refinery Cooling Water System and Sonication on Corrosion of Carbon Steel. Journal of Materials and Environmental Science, 7(1), 362-370.
  • [10] Dursun, T., & Soutis, C. 2014. Review: Recent developments in advanced aircraft aluminium alloys. Materials & Design, 56, 862–871. DOI: 10.1016/j.matdes.2013.12.002
  • [11] Smith, R. N. 1991. Developments in fuel microbiology. Biodeterioration and Biodegradation, 8, 112-124.
  • [12] Ayllon, E. S., & Rosales, B. M. 1988. Corrosion of AA7075 Aluminium Alloy in Media Contaminated with Cladosporium resinae. Corrosion Science, 44(9), 638–643. DOI: 10.5006/1.3584977
  • [13] Muthukumar, N., Rajasekar, A., Ponmarriappan, S., Mohanan, S., Maruthamuthu, S., Muralidharan, S., Subramanian, P., Palaniswamy, N., & Raghavan, M. 2003. Microbiologically Influenced Corrosion in Petroleum Product Pipelines—A Review. Indian Journal of Experimental Biology, 41(11), 1012-1022.
  • [14] Dexter, S. C. 2003. Microbiologically influenced corrosion. In Corrosion: Fundamentals, Testing and Protection, ASM Handbook (Vol. 13, p. 398). ASM International.
  • [15] da Silva Savonov, G., Camarinha, M. G. G., Rocha, L. O., Barboza, M. J. R., Martins, G. V., Reis, D. A. P. 2019. Study of the influence of the RRA thermal treatment and plasma nitriding on corrosion behavior of 7075-T6 aluminum alloy. Surface & Coatings Technology, 374, 736-744. DOI: 10.1016/j.surfcoat.2019.04.095
  • [16] Abdel-Gawad, S. A., Sadik, M. A., Shoeib, M. A. 2019. Preparation and properties of a novel nano Ni-B-Sn by electroless deposition on 7075-T6 aluminum alloy for aerospace application. Journal of Alloys and Compounds, 785, 1284-1292. DOI: 10.1016/j.jallcom.2019.01.245
  • [17] Xu, L., Wang, R., Gen, M., Lu, L., & Han, G. 2019. Preparation and properties of graphene/nickel composite coating based on textured surface of aluminum alloy. Materials, 12. DOI: 10.3390/ma12193240
  • [18] Ding, Z. 2019. Mechanistic study of thin film sulfuric acid anodizing rate difference between Al2024 T3 and Al6061 T6. Surface & Coatings Technology, 357, 280-288. DOI: 10.1016/j.surfcoat.2018.09.083
  • [19] Suzuki, R. O., Natsui, S., Nishinaga, O., Nakajima, D., & Kikuchi, T. 2015. Porous aluminum oxide formed by anodizing in various electrolyte species. Current Nanoscience,11. DOI: 10.2174/1573413711999150608144742
  • [20] Bashir, M. I., Shafiq, M., Naeem, M., Zaka-ul-Islam, M., Díaz-Guillén, J. C., Lopez-Badillo, C. M., & Zakaullah, M. 2017. Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding. Surface & Coatings Technology, 327, 59-65. DOI: 10.1016/j.surfcoat.2017.07.036
  • [21] Wu, L. K., Liu, L., Li, J., Hu, J. M., Zhang, J. Q., & Cao, C. N. 2010. Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection. Surface & Coatings Technology, 204, 3920–3926. DOI: 10.1016/j.surfcoat.2010.05.027
  • [22] Diggle, J. W., Downie, T. C., & Goulding, C. W. 1969. Anodic oxide films on aluminum. Chemical Reviews, 3, 365–405.
  • [23] Masuda, H., & Fukuda, K. 1995. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268, 1466–1468.
  • [24] Hwang, S., Jeong, S., Hwang, H., Lee, O., & Lee, K. 2002. Fabrication of highly ordered pore array in anodic aluminum oxide. Korean Journal of Chemical Engineering, 19, 467–473.
  • [25] Naimi, A., Yousfi, H., & Trari, M. 2012. Microstructure and corrosion resistance of molybdenum and aluminum coatings thermally sprayed on 7075-T6 aluminum alloy. Protection of Metals and Physical Chemistry of Surfaces, 48(5), 557–562. DOI: 10.1134/S2070205112050061
  • [26] Li, Y.-X., Zhang, P.-F., Bai, P.-K., Zhao, Z.-Y., & Liu, B. 2018. Analysis of geometrical characteristics and properties of laser cladding 85 wt.% Ti + 15 wt.% TiBCN powder on 7075 aluminum alloy substrate. Materials, 11(9), 1551-1561. DOI: 10.3390/ma11091551
  • [27] Da Silva, M. D., Partes, K., Seefeld, T., & Vollertsen, F. 2012. Comparison of coaxial and off-axis nozzle configurations in one-step process laser cladding on aluminum substrate. Journal of Materials Processing Technology, 212, 2514–2519. DOI: 10.1016/j.jmatprotec.2012.06.011
  • [28] Birbilis, N., & Hinton, B. 2011. Corrosion and corrosion protection of aluminium. In Fundamentals of Aluminium Metallurgy (pp. 574–604).
  • [29] Alkhimov, A. P., Kosarev, V. F., & Papyrin, A. N. 1990. Method of cold gas-dynamic deposition. Doklady Akademii Nauk SSSR, 315, 1062–1065 (Translated by American Institute of Physics, 1991).
  • [30] Papyrin, A., Kosarev, V. F., Klinkov, S., Alkhimov, A., & Vasily, F. 2007. Cold Spray Technology (1st ed.). Elsevier: Oxford, UK.
  • [31] Villafuerte, J. 2005. Cold Spray: A New Technology. Welding Journal, 84(5), 25-29.
  • [32] Ghosh, M., Roy, A., Ghosh, A., Kumar, H., & Saha, G. 2020. Antibacterial and antimicrobial coatings on metal substrates by cold spray technique: Present and future perspectives. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design (pp. 15–45). Elsevier: Amsterdam, The Netherlands.
  • [33] Champagne, V. K., & Helfritch, D. J. 2013. A demonstration of the antimicrobial effectiveness of various copper surfaces. Journal of Biological Engineering, 7, 8.
  • [34] Jing, H., Yu, Z., & Li, L. 2007. Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials. Wiley InterScience, 33–37. DOI: 10.1002/jbm.a.31688
  • [35] Wrona, A., Bilewska, K., Lis, M., Kamińska, M., Olszewski, T., Pajzderski, P., Więcław, G., Jaśkiewicz, M., Kamysz, W. 2017. Antimicrobial properties of protective coatings produced by plasma spraying technique. Surface & Coatings Technology, 318, 332–340. DOI: 10.1016/j.surfcoat.2017.01.101
  • [36] Sanpo, N., Saraswati, T., Lu, T. M., & Cheang, P. 2008. Anti-bacterial property of cold sprayed ZnOAl coating. In 2008 International Conference on BioMedical Engineering and Informatics (Vol. 1, pp. 488–491). DOI: 10.1109/BMEI.2008.291
  • [37] Sanpo, N., & Tharajak, J. 2017. Antimicrobial property of cold-sprayed transition metals-substituted hydroxyapatite/PEEK coating. Applied Mechanics and Materials, 866, 77–80. DOI: 10.4028/www.scientific.net/AMM.866.77
  • [38] Sanpo, N., Hailan, C., Loke, K., Keng, K. P., Cheang, P., Berndt, C. C., Khor, K. A. 2010. Biocompatibility and antibacterial property of cold sprayed ZnO/titanium composite coating. In A. Mendez-Vilas (Ed.), Science and Technology against Microbial Pathogens: Research, Development and Evaluation (pp. 140-144). Proceedings of the International Conference on Antimicrobial Research, World Scientific. DOI: 10.1142/9789814354868_0027
  • [39] Sundberg, K., Wang, Y., Mishra, B., Carl, A. D., Grimm, R. L., Te, A., Lozeau, L., Sousa, B. C., Sisson, R. D., & Cote, D. L. 2019. The Effect of Corrosion on Conventional and Nanomaterial Copper Cold Spray Surfaces for Antimicrobial Applications. Biomedical Journal of Scientific & Technical Research, 22. DOI: 10.26717/BJSTR.2019.22.003768
  • [40] Graef, H. W. 2003. An Analysis of Microbial Contamination in Military Aviation Fuel Systems (Doctoral dissertation). Air University.
  • [41] Moridi, A., Gangaraj, S. M. H., Vezzu, S., & Guagliano, M. 2014. Number of Passes and Thickness Effect on Mechanical Characteristics of Cold Spray Coating. Procedia Engineering, 74, 449-459. DOI: 10.1016/j.proeng.2014.06.296
  • [42] Xiong, Y., Zhuang, W., & Zhang, M. 2015. Effect of the thickness of cold-sprayed aluminium alloy coating on the adhesive bond strength with an aluminium alloy substrate. Surface & Coatings Technology, 270, 259–265. DOI: 10.1016/j.surfcoat.2015.02.048
  • [43] Chen, H., Liu, C., Chu, X., Zhang, T., & Zheng, J. 2022. Corrosion Behavior and Microstructure of Cu-Based Composite Coatings Deposited by Cold Spraying. Metals, 12, 955. DOI: 10.3390/met12060955
  • [44] Zhang, L., Yang, S., Lv, X., & Jie, X. 2019. Wear and corrosion resistance of cold-sprayed Cu-Based composite coatings on magnesium substrate. Journal of Thermal Spray Technology, 28(6), 1212–1224. DOI: 10.1007/s11666-019-00887-9
  • [45] Gudkov, S. V., Burmistrov, D. E., Smirnova, V. V., Semenova, A. A., & Lisitsyn, A. B. 2022. A Mini Review of Antibacterial Properties of Al2O3 Nanoparticles. Nanomaterials, 12, 2635. DOI: 10.3390/nano12152635
  • [46] Pasquet, J., Chevalier, Y., Pelletier, J., Couval, E., Bouvier, D., & Bolzinger, M. A. 2014. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 263–274. DOI: 10.1016/j.colsurfa.2014.05.057
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kaplama Teknolojisi, Korozyon
Bölüm Araştırma Makalesi
Yazarlar

Buğra Karahan 0000-0001-8053-056X

Uğur Malayoğlu 0000-0002-3196-1475

Kadir Cihan Tekin 0000-0001-7507-6550

Aslı Şahiner 0000-0001-5095-9461

Erken Görünüm Tarihi 17 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 5 Aralık 2023
Kabul Tarihi 19 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 78

Kaynak Göster

APA Karahan, B., Malayoğlu, U., Tekin, K. C., Şahiner, A. (2024). Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(78), 398-414.
AMA Karahan B, Malayoğlu U, Tekin KC, Şahiner A. Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi. DEUFMD. Eylül 2024;26(78):398-414.
Chicago Karahan, Buğra, Uğur Malayoğlu, Kadir Cihan Tekin, ve Aslı Şahiner. “Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa Ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, sy. 78 (Eylül 2024): 398-414.
EndNote Karahan B, Malayoğlu U, Tekin KC, Şahiner A (01 Eylül 2024) Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 78 398–414.
IEEE B. Karahan, U. Malayoğlu, K. C. Tekin, ve A. Şahiner, “Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi”, DEUFMD, c. 26, sy. 78, ss. 398–414, 2024.
ISNAD Karahan, Buğra vd. “Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa Ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/78 (Eylül 2024), 398-414.
JAMA Karahan B, Malayoğlu U, Tekin KC, Şahiner A. Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi. DEUFMD. 2024;26:398–414.
MLA Karahan, Buğra vd. “Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa Ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 26, sy. 78, 2024, ss. 398-14.
Vancouver Karahan B, Malayoğlu U, Tekin KC, Şahiner A. Cu Esaslı Metal Matris Kompozit Kaplamaların Pseudomonas Aeruginosa ve Aspergillus Niger Ortamlarındaki Korozyon Davranışlarının İncelenmesi. DEUFMD. 2024;26(78):398-414.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.