Araştırma Makalesi
BibTex RIS Kaynak Göster

Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications

Yıl 2024, Cilt: 26 Sayı: 78, 481 - 486

Öz

In this study, ZnO nanostructures were prepared by electrochemical anodization of electrodeposited Zn on ITO/glass substrates for cholesterol detection. The efficiency of the developed ZnO nanostructures in the detection of the Cholesterol oxidase (ChOx) enzyme was determined by the cyclic voltammetry method. The XRD and SEM results confirmed the synthesis of ZnO nanostructures prepared by the anodization method with various parameters. The effect of electrodeposition and anodization time on the morphology was observed. Cyclic voltammetry of ZnO/Zn/ITO/glass and Pt/ZnO/Zn/ITO/glass electrodes in electrolytes with various cholesterol concentrations was performed. The detection limit of the obtained Pt/ZnO/Zn/ITO/glass structured electrode was calculated as 0.965x10-3M. The resulting material with a layered structure may have potential applications in electrochemical sensors and biosensors in biomedical applications. In addition to biosensing performance, this study proposes a new approach for the development of ZnO-based biosensors that does not require expensive infrastructure and raw material costs, making it possible to develop high-sensitivity biosensor electrodes with lower detection limits with improvements to be made in future studies.

Etik Beyan

"This article does not require ethics committee approval." "This article has no conflicts of interest with any individual or institution."

Destekleyen Kurum

Dokuz Eylül University Scientific Research Coordination Unit. Project Number: 2019.KB.FEN.029

Proje Numarası

2019.KB.FEN.029

Teşekkür

The authors are indebted to the infrastructural support from Dokuz Eylül University and İzmir Katip Çelebi University. This study was supported by the Dokuz Eylül University Scientific Research Coordination Unit. Project Number: 2019.KB.FEN.029.

Kaynakça

  • [1] Duan, Y., Gong, K., Xu, S., Zhang, F., Meng, X., Han, J. 2022. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics, Signal Transduction and Targeted Therapy, Vol. 7, s. 1-29. DOI: 10.1038/s41392-022-01125-5
  • [2] Dhand, C., Singh, S.P., Arya, S.K., Datta, M. Malhotra, B.D. 2007. Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension, Analytica Chimica Acta, Vol 602, s. 244–251. DOI: 10.1016/j.aca.2007.09.028
  • [3] Khan, R., Kaushik, A., Solanki, P.R., Ansari, A.A., Pandey, M.K., Malhotra, B.D. 2008. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor, Analytica Chimica Acta, Vol. 616, s. 207–213. DOI: 10.1016/j.aca.2008.04.010
  • [4] G. Jayanthi, K., S.K., S. 2020. Cholesterol oxidase immobilized inulin-based nanocomposite as the sensing material for cholesterol in biological and food samples, Enzyme and Microbial Technology, Vol. 140, s. 1-13. DOI: 10.1016/j.enzmictec.2020.109631
  • [5] Yoon, J., Cho, H.-Y., Shin, M., Choi, H.K., Lee, T., Choi, J.-W. 2020. Flexible electrochemical biosensors for healthcare monitoring, Journal of Materials Chemistry B, Vol. 8, s. 7303–7318. DOI: 10.1039/D0TB01325K
  • [6] Zhu, H., Han, Q., Zhang, D., Wang, Y., Gao, J., Geng, W., Yang, X., Chen, X. 2018. A diagnostic model for minimal change disease based on biological parameters, PeerJ, Vol. 6, s. 1-12. DOI: 10.7717/peerj.4237
  • [7] Saxena, U., Das, A.B. 2016. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches, Biosensors and Bioelectronics, Vol. 75, s. 196–205. DOI: 10.1016/j.bios.2015.08.042
  • [8] Aykaç, A., Gergeroglu, H., Beşli, B., Akkaş, E.Ö., Yavaş, A., Güler, S., Güneş, F., Erol, M. 2021. An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors, Nanoscale Research Letters, Vol. 16, s. 1-19. DOI: 10.1186/s11671-021-03519-w
  • [9] Güneş, F., Aykaç, A., Erol, M., Erdem, Ç., Hano, H., Uzunbayir, B., Şen, M., Erdem, A. 2022. Synthesis of hierarchical hetero-composite of graphene foam/α-Fe2O3 nanowires and its application on glucose biosensors, Journal of Alloys and Compounds, Vol. 895, s. 1-10. DOI: 10.1016/j.jallcom.2021.162688
  • [10] Aykaç, A., Tunç, I.D., Güneş, F., Erol, M., Şen, M. 2021. Sensitive pH measurement using EGFET pH-microsensor based on ZnO nanowire functionalized carbon-fibers, Nanotechnology, Vol. 32, s. 1-8. DOI: 10.1088/1361-6528/ac0666
  • [11] Tunç, I.D., Erol, M., Güneş, F., Sütçü, M. 2020. Growth of ZnO nanowires on carbon fibers for photocatalytic degradation of methylene blue aqueous solutions: An investigation on the optimization of processing parameters through response surface methodology/central composite design, Ceramics International, Vol. 46, s. 7459–7474. DOI: 10.1016/j.ceramint.2019.11.244
  • [12] Chaudhary, S., Umar, A., Bhasin, K., Baskoutas, S. 2018. Chemical Sensing Applications of ZnO Nanomaterials, Materials, Vol. 11, s. 1-38. DOI: 10.3390/ma11020287
  • [13] Beitollahi, H., Tajik, S., Garkani Nejad, F., Safaei, M. 2020. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors, Journal of Materials Chemistry B, Vol. 8, s. 5826–5844. DOI: 10.1039/D0TB00569J
  • [14] AYKAÇ, A. 2019. Elektrokimyasal Anotlama Yöntemiyle ZnO Nanotellerin Üretilmesi ve Fotokatalitik Aktiviteleri, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Vol. 21, s. 67–71. DOI: 10.21205/deufmd.2019216107
  • [15] Aykaç, A., Akkaş, E.Ö. 2023. Synthesis, Characterization, and Antibacterial Properties of ZnO Nanostructures Functionalized Flexible Carbon Fibers, Recent Patents on Nanotechnology, Vol. 17, s. 119–130. DOI: 10.2174/1872210516666220414103629
  • [16] Yavaş, A., Güler, S., Erol, M. 2020. Growth of ZnO nanoflowers: effects of anodization time and substrate roughness on structural, morphological, and wetting properties, Journal of the Australian Ceramic Society, Vol. 56, s. 995–1003. DOI: 10.1007/s41779-019-00440-5
  • [17] Ozdemir, E.T., Kartal, U., Dikici, T., Erol, M., Yurddaskal, M. 2021. A comparative study on structural, morphological and photocatalytic properties of anodically grown ZnO nanowires under varying parameters, Journal of Materials Science: Materials in Electronics, Vol. 32, s. 27398–27408. DOI: 10.1007/s10854-021-07115-7
  • [18] Kumar, B., Poddar, S., Sinha, S.K. 2022. Electrochemical cholesterol sensors based on nanostructured metal oxides: Current progress and future perspectives, Journal of the Iranian Chemical Society, Vol. 19, s. 4093–4116. DOI: 10.1007/s13738-022-02605-9
  • [19] Wu, Q., Hou, Y., Zhang, M., Hou, X., Xu, L., Wang, N., Wang, J., Huang, W. 2016. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode, Analytical Methods, Vol. 8, s. 1806–1812. DOI: 10.1039/C6AY00158K
  • [20] Batra, N., Tomar, M., Gupta, V. 2013. Efficient detection of cholesterol using ZnO thin film-based matrix, Journal of Experimental Nanoscience, Vol. 8, s. 280–287 DOI: 10.1080/17458080.2012.671542
  • [21] Izyumskaya, N., Tahira, A., Ibupoto, Z.H., Lewinski, N., Avrutin, V., Özgür, Ü., Topsakal, E., Willander, M., Morkoç, H. 2017. Review—Electrochemical Biosensors Based on ZnO Nanostructures, ECS Journal of Solid-State Science and Technology, Vol. 6, s. Q84–Q100 DOI: 10.1149/2.0291708jss
  • [22] Aydın, E.B., Sezgintürk, M.K. 2017. Indium tin oxide (ITO): A promising material in biosensing technology, TrAC Trends in Analytical Chemistry, Vol. 97, s. 309–315. DOI: 10.1016/j.trac.2017.09.021
  • [23] Umar, A., Rahman, M.M., Vaseem, M., Hahn, Y.-B. 2009. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles, Electrochemistry Communications, Vol. 11, s. 118–121. DOI: 10.1016/j.elecom.2008.10.046
  • [24] Syrrokostas, G., Govatsi, K., Leftheriotis, G., Yannopoulos, S.N. 2019. Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells, Journal of Electroanalytical Chemistry, Vol. 835, s. 86–95. DOI: 10.1016/j.jelechem.2019.01.013
  • [25] Khalid, S., Malik, M.A., Lewis, D.J., Kevin, P., Ahmed, E., Khan, Y., O’Brien, P. 2015. Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies, Journal of Materials Chemistry C, Vol. 3, s. 12068–12076. DOI: 10.1039/C5TC03275J [26] Skowronski, L., Ciesielski, A., Olszewska, A., Szczesny, R., Naparty, M., Trzcinski, M., Bukaluk, A. 2020. Microstructure and Optical Properties of E-Beam Evaporated Zinc Oxide Films—Effects of Decomposition and Surface Desorption, Materials, Vol. 13, s. 1-17. DOI: 10.3390/ma13163510

ITO Yüzeylerinde Elektrodepozitlenen ZnO Nanoyapılar: Kolesterol Biyosensör Uygulamaları için Etkinliklerinin Araştırılması

Yıl 2024, Cilt: 26 Sayı: 78, 481 - 486

Öz

Bu çalışmada, ZnO nanoyapıları, kolesterol tespiti için ITO/cam altlıklar üzerine elektrodepozitlenen Zn'nin elektrokimyasal anodizasyonu ile hazırlanmıştır. Geliştirilen ZnO nanoyapıların Kolesterol oksidaz (ChOx) enziminin tespitindeki etkinliği döngüsel voltametri yöntemi ile belirlenmiştir. XRD ve SEM sonuçları, çeşitli parametrelerle anodizasyon yöntemiyle hazırlanan ZnO nanoyapıların sentezini doğrulamıştır. Elektrodepozisyon ve anodizasyon süresinin morfoloji üzerindeki etkisi gözlemlenmiştir. ZnO/Zn/ITO/cam ve Pt/ZnO/Zn/ITO/cam elektrotların çeşitli kolesterol konsantrasyonlarına sahip elektrolitlerdeki döngüsel voltametrisi gerçekleştirilmiştir. Elde edilen Pt/ZnO/Zn/ITO/cam yapılı elektrotun tespit limiti 0,965x10-3M olarak hesaplanmıştır. Elde edilen katmanlı yapıya sahip malzeme, biyomedikal uygulamalarda elektrokimyasal sensörlerde ve biyosensörlerde potansiyel uygulamalara sahip olabilir. Bu çalışma, biyosensör performansına ek olarak, ZnO tabanlı biyosensörlerin geliştirilmesi için pahalı altyapı ve hammadde maliyeti gerektirmeyen yeni bir yaklaşım önermekte ve gelecek çalışmalarda yapılacak iyileştirmelerle daha düşük tespit limitlerine sahip yüksek hassasiyetli biyosensör elektrotlarının geliştirilmesini mümkün kılmaktadır.

Proje Numarası

2019.KB.FEN.029

Kaynakça

  • [1] Duan, Y., Gong, K., Xu, S., Zhang, F., Meng, X., Han, J. 2022. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics, Signal Transduction and Targeted Therapy, Vol. 7, s. 1-29. DOI: 10.1038/s41392-022-01125-5
  • [2] Dhand, C., Singh, S.P., Arya, S.K., Datta, M. Malhotra, B.D. 2007. Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension, Analytica Chimica Acta, Vol 602, s. 244–251. DOI: 10.1016/j.aca.2007.09.028
  • [3] Khan, R., Kaushik, A., Solanki, P.R., Ansari, A.A., Pandey, M.K., Malhotra, B.D. 2008. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor, Analytica Chimica Acta, Vol. 616, s. 207–213. DOI: 10.1016/j.aca.2008.04.010
  • [4] G. Jayanthi, K., S.K., S. 2020. Cholesterol oxidase immobilized inulin-based nanocomposite as the sensing material for cholesterol in biological and food samples, Enzyme and Microbial Technology, Vol. 140, s. 1-13. DOI: 10.1016/j.enzmictec.2020.109631
  • [5] Yoon, J., Cho, H.-Y., Shin, M., Choi, H.K., Lee, T., Choi, J.-W. 2020. Flexible electrochemical biosensors for healthcare monitoring, Journal of Materials Chemistry B, Vol. 8, s. 7303–7318. DOI: 10.1039/D0TB01325K
  • [6] Zhu, H., Han, Q., Zhang, D., Wang, Y., Gao, J., Geng, W., Yang, X., Chen, X. 2018. A diagnostic model for minimal change disease based on biological parameters, PeerJ, Vol. 6, s. 1-12. DOI: 10.7717/peerj.4237
  • [7] Saxena, U., Das, A.B. 2016. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches, Biosensors and Bioelectronics, Vol. 75, s. 196–205. DOI: 10.1016/j.bios.2015.08.042
  • [8] Aykaç, A., Gergeroglu, H., Beşli, B., Akkaş, E.Ö., Yavaş, A., Güler, S., Güneş, F., Erol, M. 2021. An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors, Nanoscale Research Letters, Vol. 16, s. 1-19. DOI: 10.1186/s11671-021-03519-w
  • [9] Güneş, F., Aykaç, A., Erol, M., Erdem, Ç., Hano, H., Uzunbayir, B., Şen, M., Erdem, A. 2022. Synthesis of hierarchical hetero-composite of graphene foam/α-Fe2O3 nanowires and its application on glucose biosensors, Journal of Alloys and Compounds, Vol. 895, s. 1-10. DOI: 10.1016/j.jallcom.2021.162688
  • [10] Aykaç, A., Tunç, I.D., Güneş, F., Erol, M., Şen, M. 2021. Sensitive pH measurement using EGFET pH-microsensor based on ZnO nanowire functionalized carbon-fibers, Nanotechnology, Vol. 32, s. 1-8. DOI: 10.1088/1361-6528/ac0666
  • [11] Tunç, I.D., Erol, M., Güneş, F., Sütçü, M. 2020. Growth of ZnO nanowires on carbon fibers for photocatalytic degradation of methylene blue aqueous solutions: An investigation on the optimization of processing parameters through response surface methodology/central composite design, Ceramics International, Vol. 46, s. 7459–7474. DOI: 10.1016/j.ceramint.2019.11.244
  • [12] Chaudhary, S., Umar, A., Bhasin, K., Baskoutas, S. 2018. Chemical Sensing Applications of ZnO Nanomaterials, Materials, Vol. 11, s. 1-38. DOI: 10.3390/ma11020287
  • [13] Beitollahi, H., Tajik, S., Garkani Nejad, F., Safaei, M. 2020. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors, Journal of Materials Chemistry B, Vol. 8, s. 5826–5844. DOI: 10.1039/D0TB00569J
  • [14] AYKAÇ, A. 2019. Elektrokimyasal Anotlama Yöntemiyle ZnO Nanotellerin Üretilmesi ve Fotokatalitik Aktiviteleri, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Vol. 21, s. 67–71. DOI: 10.21205/deufmd.2019216107
  • [15] Aykaç, A., Akkaş, E.Ö. 2023. Synthesis, Characterization, and Antibacterial Properties of ZnO Nanostructures Functionalized Flexible Carbon Fibers, Recent Patents on Nanotechnology, Vol. 17, s. 119–130. DOI: 10.2174/1872210516666220414103629
  • [16] Yavaş, A., Güler, S., Erol, M. 2020. Growth of ZnO nanoflowers: effects of anodization time and substrate roughness on structural, morphological, and wetting properties, Journal of the Australian Ceramic Society, Vol. 56, s. 995–1003. DOI: 10.1007/s41779-019-00440-5
  • [17] Ozdemir, E.T., Kartal, U., Dikici, T., Erol, M., Yurddaskal, M. 2021. A comparative study on structural, morphological and photocatalytic properties of anodically grown ZnO nanowires under varying parameters, Journal of Materials Science: Materials in Electronics, Vol. 32, s. 27398–27408. DOI: 10.1007/s10854-021-07115-7
  • [18] Kumar, B., Poddar, S., Sinha, S.K. 2022. Electrochemical cholesterol sensors based on nanostructured metal oxides: Current progress and future perspectives, Journal of the Iranian Chemical Society, Vol. 19, s. 4093–4116. DOI: 10.1007/s13738-022-02605-9
  • [19] Wu, Q., Hou, Y., Zhang, M., Hou, X., Xu, L., Wang, N., Wang, J., Huang, W. 2016. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode, Analytical Methods, Vol. 8, s. 1806–1812. DOI: 10.1039/C6AY00158K
  • [20] Batra, N., Tomar, M., Gupta, V. 2013. Efficient detection of cholesterol using ZnO thin film-based matrix, Journal of Experimental Nanoscience, Vol. 8, s. 280–287 DOI: 10.1080/17458080.2012.671542
  • [21] Izyumskaya, N., Tahira, A., Ibupoto, Z.H., Lewinski, N., Avrutin, V., Özgür, Ü., Topsakal, E., Willander, M., Morkoç, H. 2017. Review—Electrochemical Biosensors Based on ZnO Nanostructures, ECS Journal of Solid-State Science and Technology, Vol. 6, s. Q84–Q100 DOI: 10.1149/2.0291708jss
  • [22] Aydın, E.B., Sezgintürk, M.K. 2017. Indium tin oxide (ITO): A promising material in biosensing technology, TrAC Trends in Analytical Chemistry, Vol. 97, s. 309–315. DOI: 10.1016/j.trac.2017.09.021
  • [23] Umar, A., Rahman, M.M., Vaseem, M., Hahn, Y.-B. 2009. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles, Electrochemistry Communications, Vol. 11, s. 118–121. DOI: 10.1016/j.elecom.2008.10.046
  • [24] Syrrokostas, G., Govatsi, K., Leftheriotis, G., Yannopoulos, S.N. 2019. Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells, Journal of Electroanalytical Chemistry, Vol. 835, s. 86–95. DOI: 10.1016/j.jelechem.2019.01.013
  • [25] Khalid, S., Malik, M.A., Lewis, D.J., Kevin, P., Ahmed, E., Khan, Y., O’Brien, P. 2015. Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies, Journal of Materials Chemistry C, Vol. 3, s. 12068–12076. DOI: 10.1039/C5TC03275J [26] Skowronski, L., Ciesielski, A., Olszewska, A., Szczesny, R., Naparty, M., Trzcinski, M., Bukaluk, A. 2020. Microstructure and Optical Properties of E-Beam Evaporated Zinc Oxide Films—Effects of Decomposition and Surface Desorption, Materials, Vol. 13, s. 1-17. DOI: 10.3390/ma13163510
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kaplama Teknolojisi, Nanomalzemeler
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Erol 0000-0002-3257-4418

Ahmet Aykaç 0000-0001-5055-2813

Tuncay Dikici 0000-0002-7004-9788

Metin Yurddaşkal 0000-0001-7293-1216

Uğur Kartal 0000-0002-5557-2300

Begüm Uzunbayır 0000-0003-0672-3421

Erdem Tevfik Özdemir 0000-0002-1033-4966

Proje Numarası 2019.KB.FEN.029
Erken Görünüm Tarihi 17 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 22 Ocak 2024
Kabul Tarihi 13 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 78

Kaynak Göster

APA Erol, M., Aykaç, A., Dikici, T., Yurddaşkal, M., vd. (2024). Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(78), 481-486.
AMA Erol M, Aykaç A, Dikici T, Yurddaşkal M, Kartal U, Uzunbayır B, Özdemir ET. Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications. DEUFMD. Eylül 2024;26(78):481-486.
Chicago Erol, Mustafa, Ahmet Aykaç, Tuncay Dikici, Metin Yurddaşkal, Uğur Kartal, Begüm Uzunbayır, ve Erdem Tevfik Özdemir. “Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, sy. 78 (Eylül 2024): 481-86.
EndNote Erol M, Aykaç A, Dikici T, Yurddaşkal M, Kartal U, Uzunbayır B, Özdemir ET (01 Eylül 2024) Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 78 481–486.
IEEE M. Erol, “Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications”, DEUFMD, c. 26, sy. 78, ss. 481–486, 2024.
ISNAD Erol, Mustafa vd. “Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/78 (Eylül 2024), 481-486.
JAMA Erol M, Aykaç A, Dikici T, Yurddaşkal M, Kartal U, Uzunbayır B, Özdemir ET. Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications. DEUFMD. 2024;26:481–486.
MLA Erol, Mustafa vd. “Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 26, sy. 78, 2024, ss. 481-6.
Vancouver Erol M, Aykaç A, Dikici T, Yurddaşkal M, Kartal U, Uzunbayır B, Özdemir ET. Electrodeposited ZnO Nanostructures on ITO Surfaces: Exploring Their Efficacy for Cholesterol Biosensing Applications. DEUFMD. 2024;26(78):481-6.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.