Araştırma Makalesi
BibTex RIS Kaynak Göster

Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi

Yıl 2025, Cilt: 27 Sayı: 79, 1 - 10, 23.01.2025
https://doi.org/10.21205/deufmd.2025277901

Öz

Bu çalışmada 7075 alüminyum alaşımı matrisli, %5, 10, 15 ve 20 oranlarında Magnezya takviyeli kompozitler toz metalürjisi yöntemiyle üretilmiştir. Daha sonra kompozitlerin abrasif aşınma deneyleri gerçekleştirilmiştir. Aşınma deneyleri 40 N yük uygulanarak, 0,9 ms-1 hızda, 90 m ve 180 m aşınma mesafelerinde yapılmıştır. Deneylerden elde edilen veriler mikroskop görüntüleriyle birlikte yorumlanmıştır. Farklı MgO takviye oranları, aşınma mesafeleri, sinterleme sıcaklıkları ve sürelerinin kompozitlerin abrasif aşınma davranışı üzerindeki etkileri değerlendirilmiştir. Aşınma mesafesinin iki kat artmasına rağmen aşınma kayıplarının aynı oranda artmadığı daha az meydana geldiği görülmüştür. Kompozit yapıda meydana gelen MgO takviye topaklanmaları ve gözenekliliğin mekanik özellikler üzerinde etkili olduğu değerlendirilmiştir. Aşınmış yüzey morfolojisinin daha çok mikro-sabanlama mekanizması şeklinde gerçekleştiği görülmüştür. Kompozitlerin aşınma davranışı üzerinde en etkili parametrenin MgO takviye miktarı olduğu, sinterleme sıcaklığı ve süresindeki değişimlerin çok önemli oranda etki yapmadığı genel sonucuna varılmıştır.

Destekleyen Kurum

Kırıkkale Üniversitesi BAP Birimi

Proje Numarası

2021/051

Teşekkür

Bu çalışma Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından 2021/051 numaralı proje kapsamında desteklenmiştir.

Kaynakça

  • [1] Dwivedi S.P., Manish Maurya M., Chauhan S.S. 2021. Mechanical, Physical and Thermal Behaviour of SiC and MgO Reinforced Aluminium Based Composite Material, Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Cilt. 8(2), s. 318-327.
  • [2] Majidiana H., Ghasalia E., Ebadzadeha T., Razavia M. 2016. Effect of Heating Method on Microstructure and Mechanical Properties of Zircon Reinforced Aluminum Composites, Materials Research, Cilt. 19(6), s. 1443-1448.
  • [3] Mosleh-Shirazi S., Akhlaghi F., Li D.Y. 2016. Effect of graphite content on the wear behavior of Al/2SiC/Gr hybrid nano-composites respectively in the ambient environment and an acidic solution, Tribology International, Cilt. 103, s. 620-628.
  • [4] Awad A.Y., Ibrahim M.N., Hussein M.K. 2018. Effects of Rice Husk Ash–Magnesium Oxide Addition on Wear Behavior of Aluminum Alloy Matrix Hybrid Composites, Tikrit Journal of Engineering Sciences, Cilt. 25(4), s. 16-23.
  • [5] El-Sayed M., Sherif, F.H., Latief, H., Junaedi, A.A. 2012. Almajid, Influence of Exfoliated Graphite Nanoplatelets Particles Additions and Sintering Temperature on the Mechanical Properties of Aluminum Matrix Composites, Int. J. Electrochem. Sci., Cilt. 7, s. 4352-4361.
  • [6] Chintada S., Dora S.P., Kare D. 2021. Mechanical Behavior and Metallographic Characterization of Microwave Sintered Al/SiC Composite Materials – An Experimental Approach, Silicon, Cilt. 10, s. 1-12.
  • [7] Albert T., Sunil J., Simon Christopher A. 2021. Jegan R., Anand Prabhu P., Selvaganesan M., Preparation and characterization of aluminium-titanium carbide (Al-TiC) composite using powder metallurgy, Cilt. 37(2), s. 1558-1561.
  • [8] Sadooghi A., Hashemi S.J. 2019. Investigating the influence of ZnO, CuO, Al2O3 reinforcing nanoparticles on strength and wearing properties of aluminum matrix nanocomposites produced by powder metallurgy process, Materials Research Express, Cilt. 6(10), s. 105019.
  • [9] Sweet G.A.W., Williams B.W., Taylor A. 2020. Hexemer R.L., Donaldson I.W., Bishop D.P., A microstructural and mechanical property investigation of a hot upset forged 2xxx series aluminum powder metallurgy alloy reinforced with AlN,Journal of Materials Processing Technology, Cilt. 284, s. 116742.
  • [10] Ansary Yar A., Montazerian M. 2009. Abdizadeh H., Baharvandi H.R., Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO, Journal of Alloys and Compounds, Cilt. 484, s. 400-404.
  • [11] John Joshua K., Vijay S.J, Ramkumar P., Kim H.G. 2017. Investigation of Microstructure and Mechanical Properties of AA7068 Reinforced with MgO prepared using Powder Metallurgy, First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), Mart 3-4, Coimbatore, India.
  • [12] Dwivedi S.P., Maurya M., Chauhan S.S. 2021. Mechanical, Physical and Thermal Behaviour of SiC and MgO Reinforced Aluminium Based Composite Material, Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Cilt. 8(2), s. 318-327.
  • [13] Khozani B.N., Abuchenari A. 2021. Effects of Mg and MgO Nanoparticles on Microstructural and Mechanical Properties of Aluminum Matrix Composite Prepared via Mechanical Alloying, Journal of Composites and Compounds, Cilt. 3, 91-98.
  • [14] Kheder A.R.I., Marahleh G.S., Al-Jamea D.M.K. 2011. Strengthening of Aluminum by SiC, Al2O3 and MgO, Jordan Journal of Mechanical and Industrial Engineering, Cilt. 5(6), s. 533-541.
  • [15] Baghchesara M.A., Abdizadeh H. 2012. Microstructural and mechanical properties of nanometric magnesium oxide particulate-reinforced aluminum matrix composites produced by powder metallurgy method, Journal of Mechanical Science and Technology, Cilt. 26(2), s. 367-372.
  • [16] Rahimiana M., Ehsania N., Parvinb N. 2009. Baharvandic H.R., The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy, Journal of Materials Processing Technology, Cilt. 209, s. 5387-539.
  • [17] Konieczny M. 2021. The Effect Of Sintering Temperature, Sintering Time And Reinforcement Particle Size On Properties Of Al-Al2O3 Composites, Composites Theory and Practice, Cilt. 12(1), s. 39-43.
  • [18] Ahlatci H., Candan E., Çimenoğlu H. 2004. Abrasive wear behavior and mechanical properties of Al–Si/SiC composites, Wear, Cilt. 257, s. 625-632.
  • [19] Mustafa R.J. 2010. Abrasive Wear of Continuous Fibre Reinforced Al And Al-Alloy Metal Matrix Composites, Jordan Journal of Mechanical and Industrial Engineering, Cilt. 4(2), s. 246-255.
  • [20] Pul M., Erdem Ü., Türkoz M.B., Yildirim G. 2023. The effect of sintering parameters and MgO ratio on structural properties in Al7075/MgO composites: A review, J Mater Sci., Cilt. 58, s. 664–684.
  • [21] Wua C., Fang P., Luo G., Chen F., Shen Q., Zhang L., Lavernia E.J. 2014. Effect of plasma activated sintering parameters on microstructure and mechanical properties of Al-7075/B4C composites, Journal of Alloys and Compounds, 615, 276-282.
  • [22] Baghchesara M.A., Abdizadeh H., Baharvandi H.R. 2010. Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composite Reinforced with Nano MgO Particles, Asian Journal of Chemistry, Cilt. 22(9), s. 6769-6777.
  • [23] Venkatesh V.S.S., Deoghare A.B.2021. Effect of Sintering Mechanisms on the Mechanical Behaviour of SiC and Kaoline Reinforced Hybrid Aluminium Metal Matrix Composite Fabricated through Powder Metallurgy Technique, Silicon, Cilt. 8.
  • [24] Xu L., Yue X., Zhang F., Tian Q. 2020. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs) Manufactured by the Power Metallurgy Techniques- Microstructure and Properties, Advances in Engineering Research, Cilt. 93, s. 99-105.
  • [25] Aydoğan S.İ., Özer M., Çinici H., Özer A. 2020. Effects of Sintering Temperature on Density and Microstructure of Al-15Si-2,5Cu-0,5Mg/B4C Composites, International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications; Exhibition (ICMATSE 2020), Ekim 2-4 Ekim, Ankara Türkiye.
  • [26] Sahoo P., Ghosh S. 2011. Tribological Behaviour Of Aluminium Metal Matrix Composites–A Review, Journal Of Tribology Research, Cilt. 2(1), s. 1-14.
  • [27] Salman K. D. & Abbas H. H. 2020. The Effect of MgO & TiO2 on Wear Behavior of Composite Material. Journal of Mechanical Engineering Research and Developments, CODEN: JERDFO, Cilt. 43(1), s. 288-297.
  • [28] Tang F., Wu X., Ge S., Ye J., Zhu H., Hagiwara M., Schoenung J.M. 2008. Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites, Wear, 264, s. 555-561.
  • [29] Rao R.N., Das S. 2010. Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites, Materials and Design, Cilt. 31, s. 1200-1207.
  • [30] Pul M., Baydaroğlu V. 2020. Investigation of mechanical properties of B4C/SiC additive aluminum based composites and modeling of their ballistic performances, Journal of Polytechnic, Cilt. 2(2), s. 383-392.
  • [31] Rahimian M., Parvin N., Ehsani N. 2010. Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy, Materials Science and Engineering A, Cilt. 527, s. 1031-1038.
  • [32] Hasırcı H., Gül F. 2010. B4C /Al Kompozitlerin Takviye Hacim Oranına Bağlıolarak Abrasif Aşınma Davranışlarının İncelenmesi, SDU International Technologic Science, Cilt. 2(1), s. 15-21.
  • [33] Buytoz S., Eren H. 2007. Effect of Particle Reinforcements on Abrasive Wear Performance of Aluminum Metal Matrix Composites, Science and Eng. J of Fırat Univ. Cilt. 1 (2), s. 209-216.
  • [34] Rajeshkumar L., Kamalakannan R., Arun Kumar K., Abineesh T. 2018. Dry Sliding Wear Behavior of AA2219 Reinforced with Magnesium Oxide and Graphite Hybrid Metal Matrix Composites, International Journal of Engineering Research & Technology (IJERT), Cilt. 6(7), s. 1-5.
  • [35] Pul M. 2018. Effect of B4C Reinforcement Ratio and Sintering Temperature on the Mechanical Behavior in Al-B4C Composites, Science of Sintering, Cilt. 50, s. 51-61.
  • [36] Yıldırım M., Özyürek D. 2018. An Investigation of Wear Behaviors of AA7075 Al Hybrid Composites, High Temp. Mater. Proc., Cilt.37(7), s. 619-624.
  • [37] Ipek R. 2005. Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C–Al/SiC). Journal of Materials Processing Technology, Cilt. 162-163, s. 71-75.
  • [38] Yashavanth Kumar T., Anil Kumar G., Satheesh J., Madhusudhan T. 2016. A Review On Properties Of Al-B4C Composite Of Different Routes, International Research Journal of Engineering and Technology (IRJET), Cilt. 3(5), s. 860-865.
  • [39] Karakoç H. 2020. Production of Powder Metal Al7075/B4C/Si3N4 Composite Materials and Investigation of Wear Properties, Journal of Polytechnic, Cilt. 23(4), s. 1141-1151.
  • [40] Joshua K.J., Vijay S.J., Selvaraj D.P., Ramkumar P. 2017. Influence of MgO particles on Microstructural and Mechanical Behaviour of AA7068 Metal Matrix Composites, IOP Conf. Series: Materials Science and Engineering, Cilt. 247, s. 012011. Islak S., Çelik H. 2015. Effect of Sintering Temperature and Boron Carbide Content on the Wear Behavior of Hot Pressed Diamond Cutting Segments, Science of Sintering, Cilt. 47, s. 131-143.
  • [41] Ravi Prakash M., Saravanan R., Nagaral M., Fabrication and Wear Behavior of Particulate Reinforced Metal Matrix Composites-An Overview, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Cilt. 14(1), s. 10-20, 2017.
  • [42] Özkan Z., Gökmeşe H., Gökmen U. 2022. Investigation of the Microstructure-Hardness and Wear Performances of Hybrid/Composite Materials Al2O3/SiC Particle Reinforced in AA 7075 Matrix, Science of Sintering, Cilt. 54, s. 1-11.
  • [43] Megahed M., Attia M.A. 2017. Abdelhameed M., El-Shafei A.G., Tribological Characterization of Hybrid Metal Matrix Composites Processed by Powder Metallurgy, Acta Metall. Sin. (Engl. Lett.), Cilt. 30(8), s. 781-790.

Effect of Manufacturing Parameters on Abrasive Wear Behavior in Magnesia Reinforced 7075 Aluminum Alloy Matrix Composites

Yıl 2025, Cilt: 27 Sayı: 79, 1 - 10, 23.01.2025
https://doi.org/10.21205/deufmd.2025277901

Öz

In this study, composites with 7075 aluminum alloy matrix 5%, 10, 15 and 20 Magnesia reinforced at different ratios were produced by powder metallurgy method. Wear tests were carried out by applying a load of 40 N, at a speed of 0.9 ms-1, at wear distances of 90 m and 180 m. Then, abrasive wear tests of the composites were carried out. The data obtained from the experiments were interpreted together with the microscope images. The effects of different MgO reinforcement ratios, wear distances, sintering temperatures and times on the abrasive wear behavior of the composites were evaluated. It has been observed that although the wearing distance has increased by two times, the wear losses have not increased at the same rate, but have occurred less frequently. It has been evaluated that the MgO reinforcement agglomerations and porosity occurring in the composite structure have an effect on the mechanical properties. It was observed that the eroded surface morphology occurred mostly in the form of micro-ploughing mechanism. It was concluded that the most effective parameter on the wear behavior of the composites is the amount of MgO reinforcement, and that the changes in sintering temperature and time do not have a significant effect.

Proje Numarası

2021/051

Kaynakça

  • [1] Dwivedi S.P., Manish Maurya M., Chauhan S.S. 2021. Mechanical, Physical and Thermal Behaviour of SiC and MgO Reinforced Aluminium Based Composite Material, Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Cilt. 8(2), s. 318-327.
  • [2] Majidiana H., Ghasalia E., Ebadzadeha T., Razavia M. 2016. Effect of Heating Method on Microstructure and Mechanical Properties of Zircon Reinforced Aluminum Composites, Materials Research, Cilt. 19(6), s. 1443-1448.
  • [3] Mosleh-Shirazi S., Akhlaghi F., Li D.Y. 2016. Effect of graphite content on the wear behavior of Al/2SiC/Gr hybrid nano-composites respectively in the ambient environment and an acidic solution, Tribology International, Cilt. 103, s. 620-628.
  • [4] Awad A.Y., Ibrahim M.N., Hussein M.K. 2018. Effects of Rice Husk Ash–Magnesium Oxide Addition on Wear Behavior of Aluminum Alloy Matrix Hybrid Composites, Tikrit Journal of Engineering Sciences, Cilt. 25(4), s. 16-23.
  • [5] El-Sayed M., Sherif, F.H., Latief, H., Junaedi, A.A. 2012. Almajid, Influence of Exfoliated Graphite Nanoplatelets Particles Additions and Sintering Temperature on the Mechanical Properties of Aluminum Matrix Composites, Int. J. Electrochem. Sci., Cilt. 7, s. 4352-4361.
  • [6] Chintada S., Dora S.P., Kare D. 2021. Mechanical Behavior and Metallographic Characterization of Microwave Sintered Al/SiC Composite Materials – An Experimental Approach, Silicon, Cilt. 10, s. 1-12.
  • [7] Albert T., Sunil J., Simon Christopher A. 2021. Jegan R., Anand Prabhu P., Selvaganesan M., Preparation and characterization of aluminium-titanium carbide (Al-TiC) composite using powder metallurgy, Cilt. 37(2), s. 1558-1561.
  • [8] Sadooghi A., Hashemi S.J. 2019. Investigating the influence of ZnO, CuO, Al2O3 reinforcing nanoparticles on strength and wearing properties of aluminum matrix nanocomposites produced by powder metallurgy process, Materials Research Express, Cilt. 6(10), s. 105019.
  • [9] Sweet G.A.W., Williams B.W., Taylor A. 2020. Hexemer R.L., Donaldson I.W., Bishop D.P., A microstructural and mechanical property investigation of a hot upset forged 2xxx series aluminum powder metallurgy alloy reinforced with AlN,Journal of Materials Processing Technology, Cilt. 284, s. 116742.
  • [10] Ansary Yar A., Montazerian M. 2009. Abdizadeh H., Baharvandi H.R., Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO, Journal of Alloys and Compounds, Cilt. 484, s. 400-404.
  • [11] John Joshua K., Vijay S.J, Ramkumar P., Kim H.G. 2017. Investigation of Microstructure and Mechanical Properties of AA7068 Reinforced with MgO prepared using Powder Metallurgy, First International Conference on Recent Advances in Aerospace Engineering (ICRAAE), Mart 3-4, Coimbatore, India.
  • [12] Dwivedi S.P., Maurya M., Chauhan S.S. 2021. Mechanical, Physical and Thermal Behaviour of SiC and MgO Reinforced Aluminium Based Composite Material, Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Cilt. 8(2), s. 318-327.
  • [13] Khozani B.N., Abuchenari A. 2021. Effects of Mg and MgO Nanoparticles on Microstructural and Mechanical Properties of Aluminum Matrix Composite Prepared via Mechanical Alloying, Journal of Composites and Compounds, Cilt. 3, 91-98.
  • [14] Kheder A.R.I., Marahleh G.S., Al-Jamea D.M.K. 2011. Strengthening of Aluminum by SiC, Al2O3 and MgO, Jordan Journal of Mechanical and Industrial Engineering, Cilt. 5(6), s. 533-541.
  • [15] Baghchesara M.A., Abdizadeh H. 2012. Microstructural and mechanical properties of nanometric magnesium oxide particulate-reinforced aluminum matrix composites produced by powder metallurgy method, Journal of Mechanical Science and Technology, Cilt. 26(2), s. 367-372.
  • [16] Rahimiana M., Ehsania N., Parvinb N. 2009. Baharvandic H.R., The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy, Journal of Materials Processing Technology, Cilt. 209, s. 5387-539.
  • [17] Konieczny M. 2021. The Effect Of Sintering Temperature, Sintering Time And Reinforcement Particle Size On Properties Of Al-Al2O3 Composites, Composites Theory and Practice, Cilt. 12(1), s. 39-43.
  • [18] Ahlatci H., Candan E., Çimenoğlu H. 2004. Abrasive wear behavior and mechanical properties of Al–Si/SiC composites, Wear, Cilt. 257, s. 625-632.
  • [19] Mustafa R.J. 2010. Abrasive Wear of Continuous Fibre Reinforced Al And Al-Alloy Metal Matrix Composites, Jordan Journal of Mechanical and Industrial Engineering, Cilt. 4(2), s. 246-255.
  • [20] Pul M., Erdem Ü., Türkoz M.B., Yildirim G. 2023. The effect of sintering parameters and MgO ratio on structural properties in Al7075/MgO composites: A review, J Mater Sci., Cilt. 58, s. 664–684.
  • [21] Wua C., Fang P., Luo G., Chen F., Shen Q., Zhang L., Lavernia E.J. 2014. Effect of plasma activated sintering parameters on microstructure and mechanical properties of Al-7075/B4C composites, Journal of Alloys and Compounds, 615, 276-282.
  • [22] Baghchesara M.A., Abdizadeh H., Baharvandi H.R. 2010. Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composite Reinforced with Nano MgO Particles, Asian Journal of Chemistry, Cilt. 22(9), s. 6769-6777.
  • [23] Venkatesh V.S.S., Deoghare A.B.2021. Effect of Sintering Mechanisms on the Mechanical Behaviour of SiC and Kaoline Reinforced Hybrid Aluminium Metal Matrix Composite Fabricated through Powder Metallurgy Technique, Silicon, Cilt. 8.
  • [24] Xu L., Yue X., Zhang F., Tian Q. 2020. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs) Manufactured by the Power Metallurgy Techniques- Microstructure and Properties, Advances in Engineering Research, Cilt. 93, s. 99-105.
  • [25] Aydoğan S.İ., Özer M., Çinici H., Özer A. 2020. Effects of Sintering Temperature on Density and Microstructure of Al-15Si-2,5Cu-0,5Mg/B4C Composites, International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications; Exhibition (ICMATSE 2020), Ekim 2-4 Ekim, Ankara Türkiye.
  • [26] Sahoo P., Ghosh S. 2011. Tribological Behaviour Of Aluminium Metal Matrix Composites–A Review, Journal Of Tribology Research, Cilt. 2(1), s. 1-14.
  • [27] Salman K. D. & Abbas H. H. 2020. The Effect of MgO & TiO2 on Wear Behavior of Composite Material. Journal of Mechanical Engineering Research and Developments, CODEN: JERDFO, Cilt. 43(1), s. 288-297.
  • [28] Tang F., Wu X., Ge S., Ye J., Zhu H., Hagiwara M., Schoenung J.M. 2008. Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites, Wear, 264, s. 555-561.
  • [29] Rao R.N., Das S. 2010. Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites, Materials and Design, Cilt. 31, s. 1200-1207.
  • [30] Pul M., Baydaroğlu V. 2020. Investigation of mechanical properties of B4C/SiC additive aluminum based composites and modeling of their ballistic performances, Journal of Polytechnic, Cilt. 2(2), s. 383-392.
  • [31] Rahimian M., Parvin N., Ehsani N. 2010. Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy, Materials Science and Engineering A, Cilt. 527, s. 1031-1038.
  • [32] Hasırcı H., Gül F. 2010. B4C /Al Kompozitlerin Takviye Hacim Oranına Bağlıolarak Abrasif Aşınma Davranışlarının İncelenmesi, SDU International Technologic Science, Cilt. 2(1), s. 15-21.
  • [33] Buytoz S., Eren H. 2007. Effect of Particle Reinforcements on Abrasive Wear Performance of Aluminum Metal Matrix Composites, Science and Eng. J of Fırat Univ. Cilt. 1 (2), s. 209-216.
  • [34] Rajeshkumar L., Kamalakannan R., Arun Kumar K., Abineesh T. 2018. Dry Sliding Wear Behavior of AA2219 Reinforced with Magnesium Oxide and Graphite Hybrid Metal Matrix Composites, International Journal of Engineering Research & Technology (IJERT), Cilt. 6(7), s. 1-5.
  • [35] Pul M. 2018. Effect of B4C Reinforcement Ratio and Sintering Temperature on the Mechanical Behavior in Al-B4C Composites, Science of Sintering, Cilt. 50, s. 51-61.
  • [36] Yıldırım M., Özyürek D. 2018. An Investigation of Wear Behaviors of AA7075 Al Hybrid Composites, High Temp. Mater. Proc., Cilt.37(7), s. 619-624.
  • [37] Ipek R. 2005. Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C–Al/SiC). Journal of Materials Processing Technology, Cilt. 162-163, s. 71-75.
  • [38] Yashavanth Kumar T., Anil Kumar G., Satheesh J., Madhusudhan T. 2016. A Review On Properties Of Al-B4C Composite Of Different Routes, International Research Journal of Engineering and Technology (IRJET), Cilt. 3(5), s. 860-865.
  • [39] Karakoç H. 2020. Production of Powder Metal Al7075/B4C/Si3N4 Composite Materials and Investigation of Wear Properties, Journal of Polytechnic, Cilt. 23(4), s. 1141-1151.
  • [40] Joshua K.J., Vijay S.J., Selvaraj D.P., Ramkumar P. 2017. Influence of MgO particles on Microstructural and Mechanical Behaviour of AA7068 Metal Matrix Composites, IOP Conf. Series: Materials Science and Engineering, Cilt. 247, s. 012011. Islak S., Çelik H. 2015. Effect of Sintering Temperature and Boron Carbide Content on the Wear Behavior of Hot Pressed Diamond Cutting Segments, Science of Sintering, Cilt. 47, s. 131-143.
  • [41] Ravi Prakash M., Saravanan R., Nagaral M., Fabrication and Wear Behavior of Particulate Reinforced Metal Matrix Composites-An Overview, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Cilt. 14(1), s. 10-20, 2017.
  • [42] Özkan Z., Gökmeşe H., Gökmen U. 2022. Investigation of the Microstructure-Hardness and Wear Performances of Hybrid/Composite Materials Al2O3/SiC Particle Reinforced in AA 7075 Matrix, Science of Sintering, Cilt. 54, s. 1-11.
  • [43] Megahed M., Attia M.A. 2017. Abdelhameed M., El-Shafei A.G., Tribological Characterization of Hybrid Metal Matrix Composites Processed by Powder Metallurgy, Acta Metall. Sin. (Engl. Lett.), Cilt. 30(8), s. 781-790.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metaller ve Alaşım Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Muharrem Pul 0000-0002-0629-3516

Proje Numarası 2021/051
Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi 23 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 79

Kaynak Göster

APA Pul, M. (2025). Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 1-10. https://doi.org/10.21205/deufmd.2025277901
AMA Pul M. Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi. DEUFMD. Ocak 2025;27(79):1-10. doi:10.21205/deufmd.2025277901
Chicago Pul, Muharrem. “Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, sy. 79 (Ocak 2025): 1-10. https://doi.org/10.21205/deufmd.2025277901.
EndNote Pul M (01 Ocak 2025) Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 1–10.
IEEE M. Pul, “Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi”, DEUFMD, c. 27, sy. 79, ss. 1–10, 2025, doi: 10.21205/deufmd.2025277901.
ISNAD Pul, Muharrem. “Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (Ocak 2025), 1-10. https://doi.org/10.21205/deufmd.2025277901.
JAMA Pul M. Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi. DEUFMD. 2025;27:1–10.
MLA Pul, Muharrem. “Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 27, sy. 79, 2025, ss. 1-10, doi:10.21205/deufmd.2025277901.
Vancouver Pul M. Magnezya Takviyeli 7075 Alüminyum Alaşımı Matrisli Kompozitlerde Üretim Parametrelerinin Abrasif Aşınma Davranışına Etkisi. DEUFMD. 2025;27(79):1-10.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.