Araştırma Makalesi
BibTex RIS Kaynak Göster

Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi

Yıl 2025, Cilt: 27 Sayı: 79, 139 - 146, 23.01.2025
https://doi.org/10.21205/deufmd.2025277918

Öz

Bu çalışmada, sucul ortamlardan toryumun uzaklaştırılması için etkili, güvenli, çevre dostu ve toksik olmayan pektin-manyetik (Fe3O4) nanobiyokompozitler birlikte çöktürme yöntemiyle sentezlenmiş ve karakterize edilmiştir. Optimum özelliklere sahip manyetik nanobiyokompozit adsorban ile toryumun sulu çözeltilerden uzaklaştırılması için, pH, toryum konsantrasyonu, sıcaklık ve temas süresi gibi ana deneysel parametrelerin etkisi kesikli yöntemlerle incelenmiştir. Langmuir, Freundlich ve Dubinin-Radushkevich izotermleri kullanılarak adsorpsiyon modeli belirlenmiş ve ilgili parametreler hesaplanmıştır. Ayrıca, adsorpsiyonun termodinamik parametreleri olan entalpi, Gibbs serbest enerji değişimi ve entropi hesaplanmıştır.

Destekleyen Kurum

Ege Üniversitesi

Kaynakça

  • [1] Nyberg, A. G., Stricklin, D., Sellström, A., 2011. Mass casualties and health care following the release of toxic chemicals or radioactive material—Contribution of modern biotechnology. International Journal of Environmental Research and Public Health, Cilt. 8(12), s. 4521–4549.
  • [2] Kaptanoglu, I. G., Yusan, S., 2023. Synthesis and characterization of graphene oxide/alginate and application of central composite design in the adsorption of Th(IV) on the nanobiocomposites. Radiochimica Acta, Cilt. 111(10), s. 751-763.
  • [3] Adman, N., Yusan, S., 2023. Synthesis and characterization of graphene oxide/alginate and application of central composite design in the adsorption of Th(IV) on the nanobiocomposites. Radiochimica Acta, Cilt. 111(2), s. 117-128.
  • [4] Kaptanoglu, I. G., Yusan, S., 2023. Adsorption of uranium ions from aqueous solutions by graphene-based zinc oxide nanocomposites. Journal of Radioanalytical and Nuclear Chemistry, Cilt. 332(11), s. 4705-4719.
  • [5] Pamukoglu, M. Y., Kirkan, B., Senyurt, M., 2017. Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge: Experimental design approach. Journal of Radioanalytical and Nuclear Chemistry, Cilt. 314, s. 343–352.
  • [6] Jyothi, R. K., Costa De Melo, L. G. T., Santos, R. M., et al., 2023. An overview of thorium as a prospective natural resource for future energy. Frontiers in Energy Research, Cilt. 11, p. 1132611.
  • [7] Grumezescu, A. M., Andronescu, E., Ficai, A., Ficai, D., Huang, K. S., Gheorghe, I., Chifiriuc, C. M., 2012. Water soluble magnetic biocomposite with potential applications for antimicrobial therapy. Biointerface Research in Applied Chemistry, Cilt. 2(6), s. 469-475.
  • [8] Saharan, P., Chaudhary, G. R., Mehta, S. K., et al., 2014. Removal of water contaminants by iron oxide nanomaterials. Journal of Nanoscience and Nanotechnology, Cilt. 14(1), s. 627-643.
  • [9] Rathore, B. S., Chauhan, N. P. S., Panneerselvam, P., et al., 2022. Synthesis and characterization of Ch-PANI-Fe2O3 nanocomposite and its water remediation applications. Water, Cilt. 14(22), p. 3615.
  • [10] Prill, B., Yusan, S., Sedir, U., et al., 2022. Strontium (II) biosorption studies on starch-functionalized magnetic nanobiocomposites using full factorial design method. Journal of Polymers and the Environment, Cilt. 30(12), s. 5148-5162.
  • [11] Akbas, Y. A., Yusan, S., Sert, S., et al., 2021. Sorption of Ce(III) on magnetic/olive pomace nanocomposite: Isotherm, kinetic and thermodynamic studies. Environmental Science and Pollution Research, Cilt. 28(40), s. 56782-56794.
  • [12] Oral, A. E., Aytas, S., Yusan, S., et al., 2020. Preparation and characterization of graphene-based magnetic nano composite for adsorption of lanthanum ions from aqueous solutions. Analytical Letters, Cilt. 53(11), s. 1812-1833.
  • [13] Akbas, Y. A., Yusan, S., 2020. Development and characterization of non-treated and chemically modified olive pomace biosorbents to remove Ce(III) ions from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, Cilt. 323(2), s. 763-772.
  • [14] Amstad, E., Textora, M., Reimhult, E., 2011. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale, Cilt. 3, p. 2819.
  • [15] Laurent, S., Forge, D., Port, M., et al., 2008. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, Cilt. 108(6), s. 2064–2110.
  • [16] Gong, J. L., Wang, X. Y., Zeng, G. M., et al., 2012. Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chemical Engineering Journal, Cilt. 185, s. 100–107.
  • [17] Kadam, A. A., Jang, J., Lee, D. S., 2016. Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution. Bioresource Technology, Cilt. 216, s. 391–398.
  • [18] Zhang, W., Zhang, L. Y., Zhao, X. J., et al., 2016. Citrus pectin derived ultrasmall Fe3O4@ C nanoparticles as a high-performance adsorbent toward removal of methylene blue. Journal of Molecular Liquids, Cilt. 222, s. 995–1002.
  • [19] Wang, S., Zhang, C., Chang, Q., 2017. Synthesis of magnetic crosslinked starch-graft-poly (acrylamide)-co-sodium xanthate and its application in removing heavy metal ions. Journal of Experimental Nanoscience, Cilt. 12, s. 270–284.
  • [20] Liang, Z., Wu, X., Xie, Y., et al., 2012. A facile approach to fabricate water‐soluble Au‐Fe3O4 nanoparticle for liver cancer cells imaging. Chinese Journal of Chemistry, Cilt. 30, s. 1387–1392.
  • [21] Naushad, M., Ahamad, T., Sharma, G., et al., 2016. Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chemical Engineering Journal, Cilt. 300, s. 306–316.
  • [22] Han, R., Zou, W., Wang, Y., et al., 2007. Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: Discussion of adsorption isotherms and pH effect. Journal of Environmental Radioactivity, Cilt. 93, s. 127–143.
  • [23] Yang, S. K., Tan, N., Yan, X. M., et al., 2013. Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Marine Pollution Bulletin, Cilt. 74(1), s. 213-219.
  • [24] Tuzen, M., Sarı, A., Saleh, T. A., 2020. Synthesis, characterization, and evaluation of carbon nanofiber modified-polymer for ultra-removal of thorium ions from aquatic media. Chemical Engineering Research and Design, Cilt. 163, s. 76-84.
  • [25] Anirudhan, T. S., Rijith, S., Tharun, A. R., 2010. Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt. 368(1–3), s. 13-22.
  • [26] Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, Cilt. 40, s. 1361–1403.
  • [27] Yusan, S. D., Erenturk, S. A., 2011. Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination, Cilt. 269, s. 58–66.
  • [28] Yusan, S. D., Akyil, S., 2008. Sorption of uranium (VI) from aqueous solutions by akaganeite. Journal of Hazardous Materials, Cilt. 160, s. 388–395.
  • [29] Yusan, S., Gok, C., Erenturk, S., et al., 2012. Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite. Applied Clay Science, Cilt. 67, s. 106–116.
  • [30] Jaycock, M. J., Parfitt, G. D., 1981. Chemistry of Interfaces. Ellis Horwood Ltd., Onichester. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US201300325033 (Erişim Tarihi: 18 Ekim 2021).

Removal of Thorium(IV) Ions Using Environmentally Friendly Magnetic Pectin Nanobiocomposites

Yıl 2025, Cilt: 27 Sayı: 79, 139 - 146, 23.01.2025
https://doi.org/10.21205/deufmd.2025277918

Öz

In this study, effective, safe, environmentally friendly and non-toxic pectin-magnetic (Fe3O4) nanobiocomposites were synthesised and characterised by co-precipitation method for the removal of thorium from aquatic environments. The effect of main experimental parameters such as pH, thorium concentration, temperature and contact time on the removal of thorium from aqueous solutions by magnetic nanobiocomposite adsorbent with optimum properties was investigated by batch methods. The adsorption model was determined using Langmuir, Freundlich and Dubinin-Radushkevich isotherms and the related parameters were calculated. In addition, the thermodynamic parameters of adsorption such as enthalpy, Gibbs free energy change and entropy were calculated.

Kaynakça

  • [1] Nyberg, A. G., Stricklin, D., Sellström, A., 2011. Mass casualties and health care following the release of toxic chemicals or radioactive material—Contribution of modern biotechnology. International Journal of Environmental Research and Public Health, Cilt. 8(12), s. 4521–4549.
  • [2] Kaptanoglu, I. G., Yusan, S., 2023. Synthesis and characterization of graphene oxide/alginate and application of central composite design in the adsorption of Th(IV) on the nanobiocomposites. Radiochimica Acta, Cilt. 111(10), s. 751-763.
  • [3] Adman, N., Yusan, S., 2023. Synthesis and characterization of graphene oxide/alginate and application of central composite design in the adsorption of Th(IV) on the nanobiocomposites. Radiochimica Acta, Cilt. 111(2), s. 117-128.
  • [4] Kaptanoglu, I. G., Yusan, S., 2023. Adsorption of uranium ions from aqueous solutions by graphene-based zinc oxide nanocomposites. Journal of Radioanalytical and Nuclear Chemistry, Cilt. 332(11), s. 4705-4719.
  • [5] Pamukoglu, M. Y., Kirkan, B., Senyurt, M., 2017. Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge: Experimental design approach. Journal of Radioanalytical and Nuclear Chemistry, Cilt. 314, s. 343–352.
  • [6] Jyothi, R. K., Costa De Melo, L. G. T., Santos, R. M., et al., 2023. An overview of thorium as a prospective natural resource for future energy. Frontiers in Energy Research, Cilt. 11, p. 1132611.
  • [7] Grumezescu, A. M., Andronescu, E., Ficai, A., Ficai, D., Huang, K. S., Gheorghe, I., Chifiriuc, C. M., 2012. Water soluble magnetic biocomposite with potential applications for antimicrobial therapy. Biointerface Research in Applied Chemistry, Cilt. 2(6), s. 469-475.
  • [8] Saharan, P., Chaudhary, G. R., Mehta, S. K., et al., 2014. Removal of water contaminants by iron oxide nanomaterials. Journal of Nanoscience and Nanotechnology, Cilt. 14(1), s. 627-643.
  • [9] Rathore, B. S., Chauhan, N. P. S., Panneerselvam, P., et al., 2022. Synthesis and characterization of Ch-PANI-Fe2O3 nanocomposite and its water remediation applications. Water, Cilt. 14(22), p. 3615.
  • [10] Prill, B., Yusan, S., Sedir, U., et al., 2022. Strontium (II) biosorption studies on starch-functionalized magnetic nanobiocomposites using full factorial design method. Journal of Polymers and the Environment, Cilt. 30(12), s. 5148-5162.
  • [11] Akbas, Y. A., Yusan, S., Sert, S., et al., 2021. Sorption of Ce(III) on magnetic/olive pomace nanocomposite: Isotherm, kinetic and thermodynamic studies. Environmental Science and Pollution Research, Cilt. 28(40), s. 56782-56794.
  • [12] Oral, A. E., Aytas, S., Yusan, S., et al., 2020. Preparation and characterization of graphene-based magnetic nano composite for adsorption of lanthanum ions from aqueous solutions. Analytical Letters, Cilt. 53(11), s. 1812-1833.
  • [13] Akbas, Y. A., Yusan, S., 2020. Development and characterization of non-treated and chemically modified olive pomace biosorbents to remove Ce(III) ions from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, Cilt. 323(2), s. 763-772.
  • [14] Amstad, E., Textora, M., Reimhult, E., 2011. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale, Cilt. 3, p. 2819.
  • [15] Laurent, S., Forge, D., Port, M., et al., 2008. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, Cilt. 108(6), s. 2064–2110.
  • [16] Gong, J. L., Wang, X. Y., Zeng, G. M., et al., 2012. Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chemical Engineering Journal, Cilt. 185, s. 100–107.
  • [17] Kadam, A. A., Jang, J., Lee, D. S., 2016. Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution. Bioresource Technology, Cilt. 216, s. 391–398.
  • [18] Zhang, W., Zhang, L. Y., Zhao, X. J., et al., 2016. Citrus pectin derived ultrasmall Fe3O4@ C nanoparticles as a high-performance adsorbent toward removal of methylene blue. Journal of Molecular Liquids, Cilt. 222, s. 995–1002.
  • [19] Wang, S., Zhang, C., Chang, Q., 2017. Synthesis of magnetic crosslinked starch-graft-poly (acrylamide)-co-sodium xanthate and its application in removing heavy metal ions. Journal of Experimental Nanoscience, Cilt. 12, s. 270–284.
  • [20] Liang, Z., Wu, X., Xie, Y., et al., 2012. A facile approach to fabricate water‐soluble Au‐Fe3O4 nanoparticle for liver cancer cells imaging. Chinese Journal of Chemistry, Cilt. 30, s. 1387–1392.
  • [21] Naushad, M., Ahamad, T., Sharma, G., et al., 2016. Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chemical Engineering Journal, Cilt. 300, s. 306–316.
  • [22] Han, R., Zou, W., Wang, Y., et al., 2007. Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: Discussion of adsorption isotherms and pH effect. Journal of Environmental Radioactivity, Cilt. 93, s. 127–143.
  • [23] Yang, S. K., Tan, N., Yan, X. M., et al., 2013. Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Marine Pollution Bulletin, Cilt. 74(1), s. 213-219.
  • [24] Tuzen, M., Sarı, A., Saleh, T. A., 2020. Synthesis, characterization, and evaluation of carbon nanofiber modified-polymer for ultra-removal of thorium ions from aquatic media. Chemical Engineering Research and Design, Cilt. 163, s. 76-84.
  • [25] Anirudhan, T. S., Rijith, S., Tharun, A. R., 2010. Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt. 368(1–3), s. 13-22.
  • [26] Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, Cilt. 40, s. 1361–1403.
  • [27] Yusan, S. D., Erenturk, S. A., 2011. Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination, Cilt. 269, s. 58–66.
  • [28] Yusan, S. D., Akyil, S., 2008. Sorption of uranium (VI) from aqueous solutions by akaganeite. Journal of Hazardous Materials, Cilt. 160, s. 388–395.
  • [29] Yusan, S., Gok, C., Erenturk, S., et al., 2012. Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite. Applied Clay Science, Cilt. 67, s. 106–116.
  • [30] Jaycock, M. J., Parfitt, G. D., 1981. Chemistry of Interfaces. Ellis Horwood Ltd., Onichester. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US201300325033 (Erişim Tarihi: 18 Ekim 2021).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ayırma Teknolojileri, Malzeme Bilimi ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Sabriye Yusan 0000-0002-1843-8591

Çağkan Özçivit 0000-0001-6644-9810

İkbal Gözde Kaptanoğlu 0000-0002-3852-9853

Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi 23 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 79

Kaynak Göster

APA Yusan, S., Özçivit, Ç., & Kaptanoğlu, İ. G. (2025). Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 139-146. https://doi.org/10.21205/deufmd.2025277918
AMA Yusan S, Özçivit Ç, Kaptanoğlu İG. Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi. DEUFMD. Ocak 2025;27(79):139-146. doi:10.21205/deufmd.2025277918
Chicago Yusan, Sabriye, Çağkan Özçivit, ve İkbal Gözde Kaptanoğlu. “Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, sy. 79 (Ocak 2025): 139-46. https://doi.org/10.21205/deufmd.2025277918.
EndNote Yusan S, Özçivit Ç, Kaptanoğlu İG (01 Ocak 2025) Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 139–146.
IEEE S. Yusan, Ç. Özçivit, ve İ. G. Kaptanoğlu, “Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi”, DEUFMD, c. 27, sy. 79, ss. 139–146, 2025, doi: 10.21205/deufmd.2025277918.
ISNAD Yusan, Sabriye vd. “Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (Ocak 2025), 139-146. https://doi.org/10.21205/deufmd.2025277918.
JAMA Yusan S, Özçivit Ç, Kaptanoğlu İG. Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi. DEUFMD. 2025;27:139–146.
MLA Yusan, Sabriye vd. “Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 27, sy. 79, 2025, ss. 139-46, doi:10.21205/deufmd.2025277918.
Vancouver Yusan S, Özçivit Ç, Kaptanoğlu İG. Çevre Dostu Manyetik Pektin Nanobiyokompozitleri Kullanarak Toryum(IV) İyonlarının Giderilmesi. DEUFMD. 2025;27(79):139-46.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.