Araştırma Makalesi
BibTex RIS Kaynak Göster

Fırçasız Doğru Akım Motor Sürücülerinin Akım Kontrolü için Bir Uyarlamalı PI Kontrolcü Tasarımı

Yıl 2025, Cilt: 27 Sayı: 79, 62 - 71, 23.01.2025
https://doi.org/10.21205/deufmd.2025277909

Öz

Fırçasız doğru akım motoru(FDAM), sayısız alanda birçok sistemi tahrik etmek için kullanılmaktadır. FDAM temel tahrik teknikleriyle kontrolü, istenilen performansın alınabilmesi için gereklidir. Her ne kadar klasik yaklaşımlar bu talepleri karşılamada yetersiz kalsa da klasik kontrolörler kolay sürüş avantajlarından dolayı kendilerine değişmez bir yer bulmuşlardır. Bu nedenlerden dolayı, birçok araştırmacı yenilikçi çözümlerin nasıl geliştireceği üzerine odaklanmıştır. Bu makalede, FDAM akım kontrolü için uyarlamalı bir PI kontrolcü önerilmektedir. Bu makaledeki amaç, FDAM akım regülasyonu için zamanla değişen kontrolör kazançlarına sahip bir PI kontrolcü tasarlamaktır. Sürekli rejim yanıtını iyileştiren önerilen uyarlamalı PI kontrolcü, bir uyarlama kuralı ve klasik bir PI kontrolcüden oluşmaktadır. Ayrıca, kararlılık analizi Lyapunov teorisi ile kanıtlanmıştır. Önerilen kontrolörün etkinliğini göstermek için karşılaştırmalarla çeşitli simülasyonlar gerçekleştirilmiştir. Klasik PI ve yüksek kazançlı akım kontrolörü ile yapılan benzetimler, sabit ve sinüzoidal referanslar ile 500 rpm ve 1500 rpm motor hızları için karşılaştırmalı olarak sunulmuştur. Klasik PI, uyarlamalı kontrolcü ile karşılaştırıldığında, uyarlamalı kontrol 2A referans akımı için akımlarının hatasının RMS'deki akım performansını 500 rpm hız için 0,3442'den 0,0656'ya ve 1500 rpm hız için 0,4703'ten 0,1552'ye iyileştirmektedir. Benzer şekilde, yüksek kazançlı kontrolcünün uyarlamalı PI ile karşılaştırma sonuçlarında, uyarlamalı kontrolcü, motor akımlarının hatasının RMS'sini 2A referans akımında 1500 rpm hız için 0,1853'ten 0,1611'e ve sinüzoidal referans akımında 1500 rpm hız için 0,1879'dan 0,1720'ye düşürmektedir.

Kaynakça

  • [1] Xia, C.-l. 2012. Permanent Magnet Brushless DC Motor Drives and Controls, John Wiley & Sons Singapore Pte. Ltd., 282s.
  • [2] Krishnan, R. 2009. Permanent Magnet Synchronous and Brushless DC Motor Drives, Taylor and Francis Group, LLC, 584s.
  • [3] Hemati, N., Leu, M. C. 1992. A complete model characterization of brushless DC motors, IEEE Transactions on Industry Applications, Vol. 28, p. 172-180, DOI: 10.1109/28.120227
  • [4] Sharma, P. K., Sindekar, A. S. 2016. Performance analysis and comparison of BLDC motor drive using PI and FOC, 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, pp. 485-492.
  • [5] Hari, K. U., Rajeevan, P. P. 2022. A Direct Torque Control Scheme for BLDC Motor Drives with Open-end Windings, 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON), Kharagpur, India, 1-6.
  • [6] İnan, R., Üzüm, O. M. 2022. Speed-Sensorless DTC of BLDC Motor with EKF-based Estimator Capable of Load Torque Estimation for Electric Vehicle. Avrupa Bilim Ve Teknoloji Dergisi, Vol.42, pp. 6-13. DOI: 10.31590/ejosat.1190197
  • [7] Ubare, P., Ingole, D., Sonawane, D.N. 2021. Nonlinear Model Predictive Control of BLDC Motor with State Estimation, IFAC-PapersOnLine, Vol. 54, pp. 107-112. DOI: 10.1016/j.ifacol.2021.08.531
  • [8] Ramesh, P., Ranjeev, A., Santhakumar, C., Vinoth, J., Bharatiraja, C. 2022. Sensor-less field orientation control for brushless direct current motor controller for electric vehicles, Materials Today: Proceedings, Vol. 65, pp. 277- 284, DOI: 10.1016/j.matpr.2022.06.168
  • [9] Soni, U. K., Tripathi, R. K. 2017, Novel back EMF zero difference point detection based sensorless technique for BLDC motor, 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, pp. 330-335
  • [10] John, M., Thomas, V. 2014. Position sensorless control of BLDC motor based on back EMF difference estimation method, 2014 Power And Energy Systems: Towards Sustainable Energy, Bangalore, India, pp. 1-6, DOI: 10.1109/pestse.2014.6805283
  • [11] Chowdhury, D., Chattopadhyay, M., Roy, P. 2013. Modelling and Simulation of Cost Effective Sensorless Drive for Brushless DC Motor, Procedia Technology, Vol. 10, pp. 279-286, DOI: 10.1016/j.protcy.2013.12.362
  • [12] Kalyani, S. T., Md, S. K. 2013. Simulation of sensorless operation of BLDC motor based on the zero-cross detection from the line voltage, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol.. 2, pp. 6185-619.
  • [13] Visoli, A., 2006. Practical PID Control, London: Springer-Verlag.
  • [14] Song, Y.D. 2018. Control of Nonlinear System via PI, PD and PID: Stability and Performance, CRC Press/Taylor & Francis Group.
  • [15] Türker, T. 2018. Fırçasız doğru akım motorunun hız kontrolü için uyarlamalı geri adımlamalı kontrolcü tasarımı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 24, pp. 214–218, DOI: 10.5505/pajes.2017.72623
  • [16] Mamadapur, A., Unde Mahadev, G. 2019. Speed Control of BLDC Motor Using Neural Network Controller and PID Controller, 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, pp. 146-151.
  • [17] Moradi, M., Ahmadi, A., Abhari, S. 2010. Optimal control based feedback linearization for position control of DC motor, 2nd International Conference on Advanced Computer Control, Shenyang, China, pp. 312-316.
  • [18] Shirvani Boroujeni, M., Arab Markadeh, G. Soltani, J. 2017. Adaptive Input-output feedback linearization control of Brushless DC Motor with arbitrary current reference using Voltage Source Inverter, 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), Mashhad, Iran, pp. 537-542.
  • [19] Awadallah, M., Bayoumi, E., Soliman, H. 2009. Adaptive deadbeat controllers for brushless DC drives using PSO and ANFIS techniques. Journal of Electrical Engineering. Vol. 60, pp. 3-11.
  • [20] Baz, R., Majdoub, K. E., Giri, F., Taouni, A. 2022. Self-tuning fuzzy PID speed controller for quarter electric vehicle driven by In-wheel BLDC motor and Pacejka's tire model, IFAC-PapersOnLine, Vol. 55, pp.598-603, DOI: 10.1016/j.ifacol.2022.07.377
  • [21] Umam, M. K. Hasanah, R. N., Nurwati, T. 2022. PID-based Fuzzy Logic Theory Implementation on BLDC Motor Speed Control, 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, pp. 407-412.
  • [22] Kumar, B. H., Bhimasingu, R., Kumar, V. S. S. 2022. Fuzzy-PI based model predictive control for speed control of BLDC motor, 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, pp. 1-6.
  • [23] Shahnazi, R., M. Akbarzadeh-T., R. 2008. PI Adaptive Fuzzy Control with Large and Fast Disturbance Rejection for a Class of Uncertain Nonlinear Systems, IEEE Transactions on Fuzzy Systems, Vol. 16, pp. 187-197, DOI: 10.1109/tfuzz.2007.903320
  • [24] Chang, W., Hwang, R., Hsieh, J. 2022. A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach, Journal of Process Control, Vol.12, pp. 233-242, DOI: 10.1016/s0959-1524(01)00041-5
  • [25] Song, Q., Song, Y.D. 2014. Generalized PI control design for a class of unknown nonaffine systems with sensor and actuator faults, Systems & Control Letters, v. 64, p. 86-95, DOI: 10.1016/j.sysconle.2013.11.011
  • [26] Y. Song, Y. Wang and C. Wen, "Adaptive Fault-Tolerant PI Tracking Control With Guaranteed Transient and Steady-State Performance," in IEEE Transactions on Automatic Control, Vol. 62, no. 1, pp. 481-487, Jan. 2017, DOI: 10.1109/TAC.2016.2554362.
  • [27] Song, Y. Huang, X. Wen, C. 2017. Robust Adaptive Fault-Tolerant PID Control of MIMO Nonlinear Systems With Unknown Control Direction, IEEE Transactions on Industrial Electronics, v. 64, p. 4876-4884, DOI: 10.1109/tie.2017.2669891
  • [28] Shi, J. Li, T., C. 2013. New Method to Eliminate Commutation Torque Ripple of Brushless DC Motor With Minimum Commutation Time, IEEE Transactions on Industrial Electronics, Vol. 60, pp. 2139-2146, DOI: 10.1109/tie.2012.2191756
  • [29] Lin, Y. -K., Lai, Y. S. 2011. Pulsewidth Modulation Technique for BLDCM Drives to Reduce Commutation Torque Ripple Without Calculation of Commutation Time, IEEE Transactions on Industry Applications, Vol. 47, pp. 1786-1793, DOI: 10.1109/tia.2011.2155612
  • [30] Türker, T. and Khudhair, I., O., K. 2017. A switched current controller with commutation delay compensation for the reduction of commutation torque ripple in BLDCM drives, Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 25, pp. 2635-2646 DOI: 10.3906/elk-1606-105
  • [31] Adıgüzel, F. Türker, T. 2017. A switching adaptive controller for the reduction of commutation torque ripple in BLDCM drives, 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, pp. 244-248.
  • [32] Haddad, W., M., VijaySekhar, C. 2008, Nonlinear Dynamical Systems and Control, Princeton University Press.
  • [33] Adıgüzel, F., Türker, T. 2022. A periodic adaptive controller for the torque loop of variable speed brushless DC motor drives with non-ideal back-electromotive force, Automatika, Vol.63:4, pp. 732-744, DOI: 10.1080/00051144.2022.2065802
  • [34] Adıgüzel, F., Türker, T. 2017. A switching adaptive current controller for BLDCM drives, 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 334-339.

An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives

Yıl 2025, Cilt: 27 Sayı: 79, 62 - 71, 23.01.2025
https://doi.org/10.21205/deufmd.2025277909

Öz

Brushless direct current motor(BLDCM) are used to drive many systems in numerous fields. The control of BLDCM with basic drive techniques is required to obtain the desired output. Although basic drive techniques may be unsatisfactory in meeting these demands, they have found an invariable place for themselves due to their easy-to-use advantages. Due to these reasons, many researchers have focused on how innovative solutions are developed. In this paper, an adaptive PI controller is proposed to control the current of BLDCM drives. This paper aims to design a PI controller with time-varying gains for current regulation. The adaptive PI, improving the steady-state response, is constructed by one adaptation rule and a classical PI. In addition, the stability analysis is proved with Lyapunov theory. To demonstrate the effectiveness of the proposed controller, several simulations are performed with comparisons. The simulations with a classical PI and high-gain current controller comparisons are presented for set-point and sinusoidal references, and 500 rpm and 1500 rpm motor speeds. Comparing the classical PI with adaptive controller, the adaptive controller improves the current performance from 0.3442 to 0.0656 for 500 rpm, and from 0.4703 to 0.1552 for 1500 rpm in RMS of the current errors for 2A reference current. Similarly, the outcomes of comparing the high-gain controller to the adaptive PI show that the designed controller reduces RMS of the currents errors from 0.1853 to 0.1611 for 1500 rpm with 2A reference current, and from 0.1879 to 0.1720 for 1500 rpm with a sinusoidal reference current.

Kaynakça

  • [1] Xia, C.-l. 2012. Permanent Magnet Brushless DC Motor Drives and Controls, John Wiley & Sons Singapore Pte. Ltd., 282s.
  • [2] Krishnan, R. 2009. Permanent Magnet Synchronous and Brushless DC Motor Drives, Taylor and Francis Group, LLC, 584s.
  • [3] Hemati, N., Leu, M. C. 1992. A complete model characterization of brushless DC motors, IEEE Transactions on Industry Applications, Vol. 28, p. 172-180, DOI: 10.1109/28.120227
  • [4] Sharma, P. K., Sindekar, A. S. 2016. Performance analysis and comparison of BLDC motor drive using PI and FOC, 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, pp. 485-492.
  • [5] Hari, K. U., Rajeevan, P. P. 2022. A Direct Torque Control Scheme for BLDC Motor Drives with Open-end Windings, 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON), Kharagpur, India, 1-6.
  • [6] İnan, R., Üzüm, O. M. 2022. Speed-Sensorless DTC of BLDC Motor with EKF-based Estimator Capable of Load Torque Estimation for Electric Vehicle. Avrupa Bilim Ve Teknoloji Dergisi, Vol.42, pp. 6-13. DOI: 10.31590/ejosat.1190197
  • [7] Ubare, P., Ingole, D., Sonawane, D.N. 2021. Nonlinear Model Predictive Control of BLDC Motor with State Estimation, IFAC-PapersOnLine, Vol. 54, pp. 107-112. DOI: 10.1016/j.ifacol.2021.08.531
  • [8] Ramesh, P., Ranjeev, A., Santhakumar, C., Vinoth, J., Bharatiraja, C. 2022. Sensor-less field orientation control for brushless direct current motor controller for electric vehicles, Materials Today: Proceedings, Vol. 65, pp. 277- 284, DOI: 10.1016/j.matpr.2022.06.168
  • [9] Soni, U. K., Tripathi, R. K. 2017, Novel back EMF zero difference point detection based sensorless technique for BLDC motor, 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, pp. 330-335
  • [10] John, M., Thomas, V. 2014. Position sensorless control of BLDC motor based on back EMF difference estimation method, 2014 Power And Energy Systems: Towards Sustainable Energy, Bangalore, India, pp. 1-6, DOI: 10.1109/pestse.2014.6805283
  • [11] Chowdhury, D., Chattopadhyay, M., Roy, P. 2013. Modelling and Simulation of Cost Effective Sensorless Drive for Brushless DC Motor, Procedia Technology, Vol. 10, pp. 279-286, DOI: 10.1016/j.protcy.2013.12.362
  • [12] Kalyani, S. T., Md, S. K. 2013. Simulation of sensorless operation of BLDC motor based on the zero-cross detection from the line voltage, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol.. 2, pp. 6185-619.
  • [13] Visoli, A., 2006. Practical PID Control, London: Springer-Verlag.
  • [14] Song, Y.D. 2018. Control of Nonlinear System via PI, PD and PID: Stability and Performance, CRC Press/Taylor & Francis Group.
  • [15] Türker, T. 2018. Fırçasız doğru akım motorunun hız kontrolü için uyarlamalı geri adımlamalı kontrolcü tasarımı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 24, pp. 214–218, DOI: 10.5505/pajes.2017.72623
  • [16] Mamadapur, A., Unde Mahadev, G. 2019. Speed Control of BLDC Motor Using Neural Network Controller and PID Controller, 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, pp. 146-151.
  • [17] Moradi, M., Ahmadi, A., Abhari, S. 2010. Optimal control based feedback linearization for position control of DC motor, 2nd International Conference on Advanced Computer Control, Shenyang, China, pp. 312-316.
  • [18] Shirvani Boroujeni, M., Arab Markadeh, G. Soltani, J. 2017. Adaptive Input-output feedback linearization control of Brushless DC Motor with arbitrary current reference using Voltage Source Inverter, 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), Mashhad, Iran, pp. 537-542.
  • [19] Awadallah, M., Bayoumi, E., Soliman, H. 2009. Adaptive deadbeat controllers for brushless DC drives using PSO and ANFIS techniques. Journal of Electrical Engineering. Vol. 60, pp. 3-11.
  • [20] Baz, R., Majdoub, K. E., Giri, F., Taouni, A. 2022. Self-tuning fuzzy PID speed controller for quarter electric vehicle driven by In-wheel BLDC motor and Pacejka's tire model, IFAC-PapersOnLine, Vol. 55, pp.598-603, DOI: 10.1016/j.ifacol.2022.07.377
  • [21] Umam, M. K. Hasanah, R. N., Nurwati, T. 2022. PID-based Fuzzy Logic Theory Implementation on BLDC Motor Speed Control, 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, pp. 407-412.
  • [22] Kumar, B. H., Bhimasingu, R., Kumar, V. S. S. 2022. Fuzzy-PI based model predictive control for speed control of BLDC motor, 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, pp. 1-6.
  • [23] Shahnazi, R., M. Akbarzadeh-T., R. 2008. PI Adaptive Fuzzy Control with Large and Fast Disturbance Rejection for a Class of Uncertain Nonlinear Systems, IEEE Transactions on Fuzzy Systems, Vol. 16, pp. 187-197, DOI: 10.1109/tfuzz.2007.903320
  • [24] Chang, W., Hwang, R., Hsieh, J. 2022. A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach, Journal of Process Control, Vol.12, pp. 233-242, DOI: 10.1016/s0959-1524(01)00041-5
  • [25] Song, Q., Song, Y.D. 2014. Generalized PI control design for a class of unknown nonaffine systems with sensor and actuator faults, Systems & Control Letters, v. 64, p. 86-95, DOI: 10.1016/j.sysconle.2013.11.011
  • [26] Y. Song, Y. Wang and C. Wen, "Adaptive Fault-Tolerant PI Tracking Control With Guaranteed Transient and Steady-State Performance," in IEEE Transactions on Automatic Control, Vol. 62, no. 1, pp. 481-487, Jan. 2017, DOI: 10.1109/TAC.2016.2554362.
  • [27] Song, Y. Huang, X. Wen, C. 2017. Robust Adaptive Fault-Tolerant PID Control of MIMO Nonlinear Systems With Unknown Control Direction, IEEE Transactions on Industrial Electronics, v. 64, p. 4876-4884, DOI: 10.1109/tie.2017.2669891
  • [28] Shi, J. Li, T., C. 2013. New Method to Eliminate Commutation Torque Ripple of Brushless DC Motor With Minimum Commutation Time, IEEE Transactions on Industrial Electronics, Vol. 60, pp. 2139-2146, DOI: 10.1109/tie.2012.2191756
  • [29] Lin, Y. -K., Lai, Y. S. 2011. Pulsewidth Modulation Technique for BLDCM Drives to Reduce Commutation Torque Ripple Without Calculation of Commutation Time, IEEE Transactions on Industry Applications, Vol. 47, pp. 1786-1793, DOI: 10.1109/tia.2011.2155612
  • [30] Türker, T. and Khudhair, I., O., K. 2017. A switched current controller with commutation delay compensation for the reduction of commutation torque ripple in BLDCM drives, Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 25, pp. 2635-2646 DOI: 10.3906/elk-1606-105
  • [31] Adıgüzel, F. Türker, T. 2017. A switching adaptive controller for the reduction of commutation torque ripple in BLDCM drives, 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, pp. 244-248.
  • [32] Haddad, W., M., VijaySekhar, C. 2008, Nonlinear Dynamical Systems and Control, Princeton University Press.
  • [33] Adıgüzel, F., Türker, T. 2022. A periodic adaptive controller for the torque loop of variable speed brushless DC motor drives with non-ideal back-electromotive force, Automatika, Vol.63:4, pp. 732-744, DOI: 10.1080/00051144.2022.2065802
  • [34] Adıgüzel, F., Türker, T. 2017. A switching adaptive current controller for BLDCM drives, 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp. 334-339.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Makineleri ve Sürücüler, Kontrol Teorisi ve Uygulamaları, Kontrol Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ceyhun Arslanoğlu 0009-0001-2823-6387

Fatih Adıgüzel 0000-0002-2161-690X

Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi 23 Ocak 2025
Gönderilme Tarihi 27 Aralık 2023
Kabul Tarihi 16 Nisan 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 79

Kaynak Göster

APA Arslanoğlu, C., & Adıgüzel, F. (2025). An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 62-71. https://doi.org/10.21205/deufmd.2025277909
AMA Arslanoğlu C, Adıgüzel F. An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives. DEUFMD. Ocak 2025;27(79):62-71. doi:10.21205/deufmd.2025277909
Chicago Arslanoğlu, Ceyhun, ve Fatih Adıgüzel. “An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, sy. 79 (Ocak 2025): 62-71. https://doi.org/10.21205/deufmd.2025277909.
EndNote Arslanoğlu C, Adıgüzel F (01 Ocak 2025) An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 62–71.
IEEE C. Arslanoğlu ve F. Adıgüzel, “An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives”, DEUFMD, c. 27, sy. 79, ss. 62–71, 2025, doi: 10.21205/deufmd.2025277909.
ISNAD Arslanoğlu, Ceyhun - Adıgüzel, Fatih. “An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (Ocak 2025), 62-71. https://doi.org/10.21205/deufmd.2025277909.
JAMA Arslanoğlu C, Adıgüzel F. An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives. DEUFMD. 2025;27:62–71.
MLA Arslanoğlu, Ceyhun ve Fatih Adıgüzel. “An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 27, sy. 79, 2025, ss. 62-71, doi:10.21205/deufmd.2025277909.
Vancouver Arslanoğlu C, Adıgüzel F. An Adaptive PI Controller Design for Current Control of Brushless DC Motor Drives. DEUFMD. 2025;27(79):62-71.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.