Araştırma Makalesi
BibTex RIS Kaynak Göster

Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller ile İncelenmesi

Yıl 2025, Cilt: 27 Sayı: 79, 22 - 30

Öz

Uzun çubuk tipi Tungsten penetratörlerin RHA (haddelenmiş homojen) zırh çelikleri üzerine yüksek hız ile çarpması esnasında oluşturduğu penetrasyon zırh sistemlerinin zafiyet analizleri ve balistik verimlerinin belirlenmesi için çok önemlidir. Çalışma kapsamında farklı boy/çap oranlarına (L/D) sahip Tungsten uzun çubuk penetratörlerin yarı sonlu RHA zırh çelikleri üzerinde 665-3500m/s çarpma hızı aralığındaki penetrasyonunu ampirik ve analitik modeller kullanılarak hesaplanmıştır. Bu hesaplamaların yapılabilmesi için Python kodlama dilinde program yazılarak malzeme bilgileri, çarpma hızı ve geometrik özellikleri girdi olarak kullanılmış delme derinliği çıktı olarak elde edilmiştir. Gerçekleştirilen hesaplama sonuçları 150 adet farklı veri noktasını içeren test sonuçları ile karşılaştırılmıştır. Karşılaştırma çalışmaları kapsamında ampirik ve analitik modellerin hesaplama hataları belirlenmiştir. Özellikle ampirik denklemlerin geçerli olduğu L/D değeri için hata oranın düşük olduğu fakat geniş L/D aralığı (10-30) için %9 hata değerine sahip olduğu belirlenmiştir. Bunun yanında Aleksiveeski-Tate modelinin L/D oranı artıkça hata oranının artığı, Walker-Anderson penetrasyon modelinin ise hem tüm L/D değerleri için deney sonuçlarına en yakın değerlerini verdiği hem de L/D değerleri artmasına rağmen hata oranın artmadığı belirlenmiştir.

Kaynakça

  • [1] Awerbuch, J. and Bodner, S. R. 1974. Analysis of The Mechanics Of Perforation Of Projectiles In Metallic Plates, Int. J. Solids Struct., Cilt.10, s.671-684, DOI:10.1016/0020-7683(74)90050
  • [2] Lehr H. F, Wolmand E. 2001. On The Optimal Performance Of Long-Rod Penetrators Subjected To Transverse Accelerations, International Journal of Imapct Engineering, Cilt.26, s.409-420, DOI: 10.1016/S0734-743X(01)00091-4
  • [3] Reis I., Teixeira-Dias F., Dias-de-Oliveria J., S.2023 Optimisation Strategies for Multi-Layered Armor Plates, International Journal of Modelling and Simulation, s.1-22, DOI: 10.1080/02286203.2023.2167505
  • [4] Lanz W., Odermatt W., Weihraach G., S. 200, Kinetic Energy Projectiles: Development History, Satet of The Art, Trends. International Symposium on Ballistics, 7-11 May 2001, 1191-1198
  • [5] Rosset, W.S., S.2001, An Overview of Novel Penetrator Technology, ARL-TR-2395, Army Research Laboratory, Aberdeen Proving Ground, s. 1-30
  • [6] Balos S., Nikacevic M., Ristic P, Sidanin L. S.2010. Jacketed Long-Rod Penetrators: Problems and Perspectives, Scintific Technical Review, Cilt.60, s.70-75
  • [7] Keeele M.J., Rapacki E.J.,Bruchey W.J., S.1991. High Velocity Performance of A Uranium Alloy Long Rod Penetrator, BRL-TD-3236, US Armu Ballistic Research Laboratory, s.1-24
  • [8] Bjerke T.W., Silsby G.F., D.R. Scheffler, Mudd R.M., S. 1992. Yawd long-rod armor penetration. International Journal of Impact Engineering, Cilt.12, s.281-292. DOI:10.1016/0734-743X(92)90473-7.
  • [9] Anderson C. E., Behner T., Hohler V., S.2013. Penetration as a Function of Target Obliquity and Projectile Pitch. Journal of Aplied Mechanics. Cilt.80, s.1-11.DOI: 10.1115/1.4023342
  • [10] Yarin A.L., Rubin M. B., Roisman I.V., S.1995, Penetration of a Rigid Projectile Into An Elastic-Plastic Target of Finite Thickness. International Journal of Impact Engineering. Cilt.16. s.801-831. DOI: 10.1016/0734-743X(95)00019-7.
  • [11] Leonard W. S.1997. The Effect of Nose Shape on Depleted Uranium (DU) Long-Rod Penetration. ARL-TR-1505. Army Resarch Laboratory. Aberdeen Proving Ground.
  • [12] Wilson L.L., Foster J.C., Jones S.E., Girillis P. S.1989. Experimental Rod Impact Results. International Journal of Impact Engineering. Cilt.8, s.15-25. DOI: 10.1016/0734-743X(89)90028-6.
  • [13] Anderson C. E., Walker J.D. S.1991. An Examination of Long Rod Penetration, International Journal of Impact Engineering. Cilt.11, s.481-501. DOI: 10.1016/0734-743X(91)90015-8.
  • [14] Anderson C. E., Walker J.D., Bless S.J., Partom Y. S.1996. On the L/D effect for Long-Rod Penetrators. International Journal of Impact Engineering. Cilt.18, s.247-264. DOI: 10.1016/0734-743X(95)00028-9.
  • [15] Alekseevskii V. P, S.1966, Penetration Into A Target At High Velocity, Combustion, Explosion and Shock Waves, Cilt.2, s.99-106.DOI: 10.1007/BF00749237.
  • [16] Tate A., S. 1967. A Theory For The Deceleration of Long Rods After Impact, Journal of Mechanics and Physics of Solids, Cilt.15, s.387-399.DOI: 10.1016/0022-5096(67)90010-5.
  • [17] Lanz W., Odermatt W.,S.1992. Penetration Limits of Conventional Large Caliber Anti-Tank Guns/Kinetic Energy Projectiles. 13.International Symposium on Ballistics, 1-3 June 1992, 225-233
  • [18] Huang F., ZHANG L., S.2007. Investigation on Ballistic Performanceof Armor Ceramics Against Long-Rod Penetration. Metallurgical And Materials Transactions A, Cilt.38A. s.2891-2895. DOI: 10.1007/s11661-007-9281-8
  • [19] Goh W.L, Zheng Y., Yuan J., Ng K.W. S.2017. Effects of Hardness of Steel on Ceramic Armour Module Agaist Long Rod Impact. International Journal of Impact Engineering. Cilt.109, s.419-426. DOI: 10.1016/j.ijimpeng.2017.08.004.
  • [20] Luo D., Wang Y., Wang F.,Cheng H., Zhu Yu.S.2019. Ballistic Behaviour of Oblique Composite Structure Against Long-Rod Tungsten Projectiles. Materias, Cilt12,s.1-13. DOI: 10.3390/ma12182946
  • [21] Goh W., Luo B. Zeng. Z, Yuan J. Kee Woei Ng. S.2019. Effect of Hardness and Toughness of Ceramic Armour Module Against Long-Rod Impacts. 42nd International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings, Cilt.39, s.185‑198. DOI: 10.1002/9781119543343.ch18
  • [22] Fellows N.A., Barton P.C. S.1999. Development of Impact model for Ceramic-faced Semi-inifinite Armour. International Journal of Impact Engineering, Cilt.22, s.793-811.DOI: 10.1016/S0734-743X(99)00017-2
  • [23] Tate A.K. Green E.B., Chamberelain P. G. , Baker R. G. S. 1978. Model Scale Experiments on Long Rod Penetration. 4th Internatonal Symposium on Ballistics, 17-19 Ekim 1978,Monterey, Kanada.
  • [24] Magness, L.S.. Farrand T. G. S.1990. Deformation Behivour and Its Relationship to the Penetration Performance of High Density KE Penetrators Material. Army Sicence Conference, Durham, NC.
  • [25] Hohler, V., Schneider E., Stilp A. J., Tham R. S.1978. Length- and Velocity Reduction of High Density Rods Perforating Mild Steel and Armor Steel Plates. 4th Internatonal Symposium on Ballistics, 17-19 Ekim 1978, Monterey, Kanada.
  • [26] Hohler, V. Stilp A. J. S.1977. Penetration of Steel and High Density Rods in Semi-Infinite Steel Targets. 3rd International Symposium on Ballistics, 23-25 Mart 1977, Karlsruhe, Almanya.
  • [27] Hohler, V. Stilp A. J. S.1984. Influence of the Length-to-Diameter Ratio in the Range from 1 to 32 on the Penetration Performance of Rod Projectiles. 8th International Symposium on Ballistics, , 23-25 Ekim 1984. Orlando,Amerika
  • [28] Hohler, V., Stilp A. J. S.1987. Hypervelocity Impact of Rod Projectiles with L/D from 1 to 32. International Journal of Imapct Engineering, Cilt.5, s.323-334, DOI: 10.1016/0734-743X(87)90049-2.
  • [29] Sentil P.P., Reddy, P.R., Reddy, T.S., Kumar, K.S., Madhu,V., S.2019. Scaled WHA Long Rod Projectile Impact Against Armour Steel. Human Factors and Mechanical Engineering for Defense and Safety, Cilt.3, s.1-8. DOI: 10.1007/s41314-019-0018-4.
  • [30] Freuh, S., Heine, A., Weber, K.E., Wickert, M. S.2016. Effective depth-of-penetration range due to hardness variation for different lots of nominally identical target material. Defence Technology. Cilt.12, s.171-176. DOI:10.1016/j.dt.2015.10.002.
  • [31] Sorensen B.R., Kimsey K.D., Silsby G. F., Scheffler D.R. ,Sherrick T. M, De Rosset W. S. 1991. High Velocity Penetration of Steel Target. International Journal of Imapct Engineering, Cilt.11, s.107-119, DOI: 10.1016/0734-743X(91)90034-D
  • [32] Fras T. S.2021. Experimental and numerical Study on a Non-Experimental Ractive Armour with the Rubber Interlayer Applied Against Kinetic Energy Penetrators-The ‘Bulging Effect’ Analysis. Materials, Cilt.14, s.1-17. DOI: /10.3390/ma14123334
  • [33] Anderson C.E., Royal-Timmons S. A., S.1997. Ballistic Performance of Confined 99.5% Al2O3 Ceramic Tiles, International Journal of Imapct Engineering, Cilt 19,s. 703-713, DOI:. 10.1016/S0734-743X(97)00006-7
  • [34] Woolsey, P., Mariano, S., Kokidko, D. S.1989. Alternative Test Methodology for Ballistic Performance Ranking of Armor Ceramics Report No. MTL TR 89-43, U. S. Army Materials Technology Laboratory, Watertown, Massachusetts.
  • [35] Woolsey, P., Mariano, S., Kokidko, D. S.1990. Progress Report on Ballistic Test Methodology for Armor Ceramics. Proceedings of TACOM Combat Vehicle Survivability Symposium, Gaithersburg, MD, 15 Mart 1990.
  • [36] Gooch, W.A., Burkins, M.S., Ernst, H-J, Wolf T. S.1995. Ballistic Penetration of Titanium Alloy Ti-6Al-4V. Lightweight Armor Systems Sympossium’95, The Royal Military College of Science, Shrivenham, İngiltere, 28-30 Haziran 1995
  • [37] Silsby G. F., S.1984. Penetration of Semi-Infinite Steel Targets by Tungsten Long Rods at 1.3 to 4.5km/s. 8th.International Symposium on Ballistics, 23-25 Ekim 1984,Florida, 669-673
  • [38] Yuan, J., Tan, E.B., S.2014. An Examination of DOP Test of Ceramic Tile Subjected to Long Rod Penetration. Applied Mechanics and Materials . Cilt.566. s. 353-358. DOI: 10.4028/www.scientific.net/AMM.566.353.
  • [39] Walters, W., Williams, C., S.2005. A Solution of the Alekseevski-Tate Penetration Equations. ARL-TR-3606. Army Research Laboratory, Aberdeen Proving Ground. s.1-50
  • [40] Zhang, D., Li, J., Wei, X., Feng, K., Wang, Yu, Zhao, J., Xue, D., S.2020. Research on Dynamic Test of Hyper-Velocity Impact Penetration Acceleration Signal. IEEE, Cilt.8, s.194879-194893. DOI: 10.1109/ACCESS.2020.3033676
  • [41] Lan, B., Wen, H., S.2010. Alekseevskii-Tate revisted: An extension of the Modified Hydrodynamic Theory of Long Rod Penetration. Science China Technological Sciences. Cilt.53, s.1364-1373. DOI: 10.1007/s11431-010-0011-x
  • [42] Jiao, W.J., Chen, X.W., S.2018. Approximate Solutions of the Alekseevskii-Tate Model of Long Rod Penetration. Acta Mech.Sin. Cilt.34, s.334-348. DOI: 10.1007/s10409-017-0672-9.
  • [43] Lou, J., Zhang Y., Wang, Z.,Hong, T., Zhang, X., Zhang S., S.2014. Long-Rod Penetration: The Transition Zone Between Rigid and Hydrodynamic Penetration Models. Defecnce Technology. Cilt.10. s.239-244. DOI: 10.1016/j.dt.2014.05.007
  • [44] Zhiyong, Y., Chen, X. Sç2021. Analysis of Characteristic Parameters of Long-Rod Penetration. Explosion and Shock Waves. Cilt.41, s.1-7. DOI: 10.11883/bzycj-2020-0057
  • [45] Jeanquartier R., Odermatt W. S.1995. Post Perforation Length and Velocities of KE Projectiles with Single Oblique Targets. 15th International Sympossium on Ballistic. 21-24 Mayıs 1995, Kudüs, s.1-8.
  • [46] Auten, J. R. S. 2011. A Comparison of Penetration Algorithms: Predictions vs. Test Data For Kinetic Energy Rods, 26th International Symposium On Ballistics, 12-16 Eylül 2011,Miami , s.1522-1533
  • [47] Tate, A. S.1969. Further Results In The Theory of Long Rod Penetration, Journal of the Mechanics and Physics of Solids, Cilt.17, p 141-150. DOI:10.1016/0022-5096(69)90028-3.
  • [48] MIL-DTL-12560K, S.2013. Armor Plate , Steel Wrought, Homogeneous (For Use In Combat-Vehicles And For Ammunition Testing).
  • [49] Walker, J. ,Anderson, C. E. J. S. 1995. A Time-Dependent Model For Long-Rod Penetration. International Journal of Impact Engineering, Cilt.16, s.19-48. DOI: 10.1016/0734-743X(94)00032-R.
  • [50] Walker, J. ,Anderson, C. E. J. S. 1998. Penetration Modellin of Ceramic and Metal Targets. 36th Aerospace Sciences Meeting&Exhibit. 12-15 Ocak 1998, Reno, s.1-7

Depth of Penetration Behaviour Analysis of Tungsten Long-Rod Penetrator Impacting on Armour Steel by Penetration Models

Yıl 2025, Cilt: 27 Sayı: 79, 22 - 30

Öz

The penetration behavior of Tungsten long rod penetrators on RHA (Rolled-homogenous Armor) steels is very important for vulnerability analysis and ballistic efficiency determination of armor systems. Within the scope of the study, the penetration of Tungsten long rod penetrators with different length to diameter ratios (L/D) on semi-infinite RHA armor steels with various impact velocities between 665-3500 m/s was calculated by using empirical and analytical models. In order to make these calculations, a program was written in Python coding language. Material properties, impact velocity and geometric properties were used as inputs while the penetration depth was obtained as an output. Calculated penetration values were compared with test results for 150 different data points. Also, calculation errors between experimental and empirical/analytical models were determined. It has been found that the error rate was low, especially for the lower L/D values where empirical equations are valid, but for empirical equation which is valid for greater L/D range (10-30) only 9% error rate was achieved. In addition, it was determined that the error rate of the Aleksiveeskii-Tate penetration model increased as the L/D ratio increased, while the Walker-Anderson penetration model gave the closest values to the experimental results for each L/D value and the error rate did not increase even though the L/D values increased.

Kaynakça

  • [1] Awerbuch, J. and Bodner, S. R. 1974. Analysis of The Mechanics Of Perforation Of Projectiles In Metallic Plates, Int. J. Solids Struct., Cilt.10, s.671-684, DOI:10.1016/0020-7683(74)90050
  • [2] Lehr H. F, Wolmand E. 2001. On The Optimal Performance Of Long-Rod Penetrators Subjected To Transverse Accelerations, International Journal of Imapct Engineering, Cilt.26, s.409-420, DOI: 10.1016/S0734-743X(01)00091-4
  • [3] Reis I., Teixeira-Dias F., Dias-de-Oliveria J., S.2023 Optimisation Strategies for Multi-Layered Armor Plates, International Journal of Modelling and Simulation, s.1-22, DOI: 10.1080/02286203.2023.2167505
  • [4] Lanz W., Odermatt W., Weihraach G., S. 200, Kinetic Energy Projectiles: Development History, Satet of The Art, Trends. International Symposium on Ballistics, 7-11 May 2001, 1191-1198
  • [5] Rosset, W.S., S.2001, An Overview of Novel Penetrator Technology, ARL-TR-2395, Army Research Laboratory, Aberdeen Proving Ground, s. 1-30
  • [6] Balos S., Nikacevic M., Ristic P, Sidanin L. S.2010. Jacketed Long-Rod Penetrators: Problems and Perspectives, Scintific Technical Review, Cilt.60, s.70-75
  • [7] Keeele M.J., Rapacki E.J.,Bruchey W.J., S.1991. High Velocity Performance of A Uranium Alloy Long Rod Penetrator, BRL-TD-3236, US Armu Ballistic Research Laboratory, s.1-24
  • [8] Bjerke T.W., Silsby G.F., D.R. Scheffler, Mudd R.M., S. 1992. Yawd long-rod armor penetration. International Journal of Impact Engineering, Cilt.12, s.281-292. DOI:10.1016/0734-743X(92)90473-7.
  • [9] Anderson C. E., Behner T., Hohler V., S.2013. Penetration as a Function of Target Obliquity and Projectile Pitch. Journal of Aplied Mechanics. Cilt.80, s.1-11.DOI: 10.1115/1.4023342
  • [10] Yarin A.L., Rubin M. B., Roisman I.V., S.1995, Penetration of a Rigid Projectile Into An Elastic-Plastic Target of Finite Thickness. International Journal of Impact Engineering. Cilt.16. s.801-831. DOI: 10.1016/0734-743X(95)00019-7.
  • [11] Leonard W. S.1997. The Effect of Nose Shape on Depleted Uranium (DU) Long-Rod Penetration. ARL-TR-1505. Army Resarch Laboratory. Aberdeen Proving Ground.
  • [12] Wilson L.L., Foster J.C., Jones S.E., Girillis P. S.1989. Experimental Rod Impact Results. International Journal of Impact Engineering. Cilt.8, s.15-25. DOI: 10.1016/0734-743X(89)90028-6.
  • [13] Anderson C. E., Walker J.D. S.1991. An Examination of Long Rod Penetration, International Journal of Impact Engineering. Cilt.11, s.481-501. DOI: 10.1016/0734-743X(91)90015-8.
  • [14] Anderson C. E., Walker J.D., Bless S.J., Partom Y. S.1996. On the L/D effect for Long-Rod Penetrators. International Journal of Impact Engineering. Cilt.18, s.247-264. DOI: 10.1016/0734-743X(95)00028-9.
  • [15] Alekseevskii V. P, S.1966, Penetration Into A Target At High Velocity, Combustion, Explosion and Shock Waves, Cilt.2, s.99-106.DOI: 10.1007/BF00749237.
  • [16] Tate A., S. 1967. A Theory For The Deceleration of Long Rods After Impact, Journal of Mechanics and Physics of Solids, Cilt.15, s.387-399.DOI: 10.1016/0022-5096(67)90010-5.
  • [17] Lanz W., Odermatt W.,S.1992. Penetration Limits of Conventional Large Caliber Anti-Tank Guns/Kinetic Energy Projectiles. 13.International Symposium on Ballistics, 1-3 June 1992, 225-233
  • [18] Huang F., ZHANG L., S.2007. Investigation on Ballistic Performanceof Armor Ceramics Against Long-Rod Penetration. Metallurgical And Materials Transactions A, Cilt.38A. s.2891-2895. DOI: 10.1007/s11661-007-9281-8
  • [19] Goh W.L, Zheng Y., Yuan J., Ng K.W. S.2017. Effects of Hardness of Steel on Ceramic Armour Module Agaist Long Rod Impact. International Journal of Impact Engineering. Cilt.109, s.419-426. DOI: 10.1016/j.ijimpeng.2017.08.004.
  • [20] Luo D., Wang Y., Wang F.,Cheng H., Zhu Yu.S.2019. Ballistic Behaviour of Oblique Composite Structure Against Long-Rod Tungsten Projectiles. Materias, Cilt12,s.1-13. DOI: 10.3390/ma12182946
  • [21] Goh W., Luo B. Zeng. Z, Yuan J. Kee Woei Ng. S.2019. Effect of Hardness and Toughness of Ceramic Armour Module Against Long-Rod Impacts. 42nd International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings, Cilt.39, s.185‑198. DOI: 10.1002/9781119543343.ch18
  • [22] Fellows N.A., Barton P.C. S.1999. Development of Impact model for Ceramic-faced Semi-inifinite Armour. International Journal of Impact Engineering, Cilt.22, s.793-811.DOI: 10.1016/S0734-743X(99)00017-2
  • [23] Tate A.K. Green E.B., Chamberelain P. G. , Baker R. G. S. 1978. Model Scale Experiments on Long Rod Penetration. 4th Internatonal Symposium on Ballistics, 17-19 Ekim 1978,Monterey, Kanada.
  • [24] Magness, L.S.. Farrand T. G. S.1990. Deformation Behivour and Its Relationship to the Penetration Performance of High Density KE Penetrators Material. Army Sicence Conference, Durham, NC.
  • [25] Hohler, V., Schneider E., Stilp A. J., Tham R. S.1978. Length- and Velocity Reduction of High Density Rods Perforating Mild Steel and Armor Steel Plates. 4th Internatonal Symposium on Ballistics, 17-19 Ekim 1978, Monterey, Kanada.
  • [26] Hohler, V. Stilp A. J. S.1977. Penetration of Steel and High Density Rods in Semi-Infinite Steel Targets. 3rd International Symposium on Ballistics, 23-25 Mart 1977, Karlsruhe, Almanya.
  • [27] Hohler, V. Stilp A. J. S.1984. Influence of the Length-to-Diameter Ratio in the Range from 1 to 32 on the Penetration Performance of Rod Projectiles. 8th International Symposium on Ballistics, , 23-25 Ekim 1984. Orlando,Amerika
  • [28] Hohler, V., Stilp A. J. S.1987. Hypervelocity Impact of Rod Projectiles with L/D from 1 to 32. International Journal of Imapct Engineering, Cilt.5, s.323-334, DOI: 10.1016/0734-743X(87)90049-2.
  • [29] Sentil P.P., Reddy, P.R., Reddy, T.S., Kumar, K.S., Madhu,V., S.2019. Scaled WHA Long Rod Projectile Impact Against Armour Steel. Human Factors and Mechanical Engineering for Defense and Safety, Cilt.3, s.1-8. DOI: 10.1007/s41314-019-0018-4.
  • [30] Freuh, S., Heine, A., Weber, K.E., Wickert, M. S.2016. Effective depth-of-penetration range due to hardness variation for different lots of nominally identical target material. Defence Technology. Cilt.12, s.171-176. DOI:10.1016/j.dt.2015.10.002.
  • [31] Sorensen B.R., Kimsey K.D., Silsby G. F., Scheffler D.R. ,Sherrick T. M, De Rosset W. S. 1991. High Velocity Penetration of Steel Target. International Journal of Imapct Engineering, Cilt.11, s.107-119, DOI: 10.1016/0734-743X(91)90034-D
  • [32] Fras T. S.2021. Experimental and numerical Study on a Non-Experimental Ractive Armour with the Rubber Interlayer Applied Against Kinetic Energy Penetrators-The ‘Bulging Effect’ Analysis. Materials, Cilt.14, s.1-17. DOI: /10.3390/ma14123334
  • [33] Anderson C.E., Royal-Timmons S. A., S.1997. Ballistic Performance of Confined 99.5% Al2O3 Ceramic Tiles, International Journal of Imapct Engineering, Cilt 19,s. 703-713, DOI:. 10.1016/S0734-743X(97)00006-7
  • [34] Woolsey, P., Mariano, S., Kokidko, D. S.1989. Alternative Test Methodology for Ballistic Performance Ranking of Armor Ceramics Report No. MTL TR 89-43, U. S. Army Materials Technology Laboratory, Watertown, Massachusetts.
  • [35] Woolsey, P., Mariano, S., Kokidko, D. S.1990. Progress Report on Ballistic Test Methodology for Armor Ceramics. Proceedings of TACOM Combat Vehicle Survivability Symposium, Gaithersburg, MD, 15 Mart 1990.
  • [36] Gooch, W.A., Burkins, M.S., Ernst, H-J, Wolf T. S.1995. Ballistic Penetration of Titanium Alloy Ti-6Al-4V. Lightweight Armor Systems Sympossium’95, The Royal Military College of Science, Shrivenham, İngiltere, 28-30 Haziran 1995
  • [37] Silsby G. F., S.1984. Penetration of Semi-Infinite Steel Targets by Tungsten Long Rods at 1.3 to 4.5km/s. 8th.International Symposium on Ballistics, 23-25 Ekim 1984,Florida, 669-673
  • [38] Yuan, J., Tan, E.B., S.2014. An Examination of DOP Test of Ceramic Tile Subjected to Long Rod Penetration. Applied Mechanics and Materials . Cilt.566. s. 353-358. DOI: 10.4028/www.scientific.net/AMM.566.353.
  • [39] Walters, W., Williams, C., S.2005. A Solution of the Alekseevski-Tate Penetration Equations. ARL-TR-3606. Army Research Laboratory, Aberdeen Proving Ground. s.1-50
  • [40] Zhang, D., Li, J., Wei, X., Feng, K., Wang, Yu, Zhao, J., Xue, D., S.2020. Research on Dynamic Test of Hyper-Velocity Impact Penetration Acceleration Signal. IEEE, Cilt.8, s.194879-194893. DOI: 10.1109/ACCESS.2020.3033676
  • [41] Lan, B., Wen, H., S.2010. Alekseevskii-Tate revisted: An extension of the Modified Hydrodynamic Theory of Long Rod Penetration. Science China Technological Sciences. Cilt.53, s.1364-1373. DOI: 10.1007/s11431-010-0011-x
  • [42] Jiao, W.J., Chen, X.W., S.2018. Approximate Solutions of the Alekseevskii-Tate Model of Long Rod Penetration. Acta Mech.Sin. Cilt.34, s.334-348. DOI: 10.1007/s10409-017-0672-9.
  • [43] Lou, J., Zhang Y., Wang, Z.,Hong, T., Zhang, X., Zhang S., S.2014. Long-Rod Penetration: The Transition Zone Between Rigid and Hydrodynamic Penetration Models. Defecnce Technology. Cilt.10. s.239-244. DOI: 10.1016/j.dt.2014.05.007
  • [44] Zhiyong, Y., Chen, X. Sç2021. Analysis of Characteristic Parameters of Long-Rod Penetration. Explosion and Shock Waves. Cilt.41, s.1-7. DOI: 10.11883/bzycj-2020-0057
  • [45] Jeanquartier R., Odermatt W. S.1995. Post Perforation Length and Velocities of KE Projectiles with Single Oblique Targets. 15th International Sympossium on Ballistic. 21-24 Mayıs 1995, Kudüs, s.1-8.
  • [46] Auten, J. R. S. 2011. A Comparison of Penetration Algorithms: Predictions vs. Test Data For Kinetic Energy Rods, 26th International Symposium On Ballistics, 12-16 Eylül 2011,Miami , s.1522-1533
  • [47] Tate, A. S.1969. Further Results In The Theory of Long Rod Penetration, Journal of the Mechanics and Physics of Solids, Cilt.17, p 141-150. DOI:10.1016/0022-5096(69)90028-3.
  • [48] MIL-DTL-12560K, S.2013. Armor Plate , Steel Wrought, Homogeneous (For Use In Combat-Vehicles And For Ammunition Testing).
  • [49] Walker, J. ,Anderson, C. E. J. S. 1995. A Time-Dependent Model For Long-Rod Penetration. International Journal of Impact Engineering, Cilt.16, s.19-48. DOI: 10.1016/0734-743X(94)00032-R.
  • [50] Walker, J. ,Anderson, C. E. J. S. 1998. Penetration Modellin of Ceramic and Metal Targets. 36th Aerospace Sciences Meeting&Exhibit. 12-15 Ocak 1998, Reno, s.1-7
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Balistik Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Kaan Toksoy 0000-0001-6773-7187

Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 23 Ocak 2024
Kabul Tarihi 20 Mart 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 79

Kaynak Göster

APA Toksoy, A. K. (2025). Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller ile İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 22-30.
AMA Toksoy AK. Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller ile İncelenmesi. DEUFMD. Ocak 2025;27(79):22-30.
Chicago Toksoy, Ahmet Kaan. “Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller Ile İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, sy. 79 (Ocak 2025): 22-30.
EndNote Toksoy AK (01 Ocak 2025) Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller ile İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 22–30.
IEEE A. K. Toksoy, “Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller ile İncelenmesi”, DEUFMD, c. 27, sy. 79, ss. 22–30, 2025.
ISNAD Toksoy, Ahmet Kaan. “Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller Ile İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (Ocak 2025), 22-30.
JAMA Toksoy AK. Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller ile İncelenmesi. DEUFMD. 2025;27:22–30.
MLA Toksoy, Ahmet Kaan. “Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller Ile İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 27, sy. 79, 2025, ss. 22-30.
Vancouver Toksoy AK. Tungsten Uzun Çubuk Tipi Penetratörlerin Zırh Çelikleri Üzerindeki Delme Etkinliğinin Penetrasyon Modeller ile İncelenmesi. DEUFMD. 2025;27(79):22-30.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.