Araştırma Makalesi
BibTex RIS Kaynak Göster

32P Cilt Yama Kaynağının Doz Dağılımının GAMOS Monte Carlo Simülasyonu İle İncelenmesi

Yıl 2025, Cilt: 27 Sayı: 79, 11 - 14

Öz

Son yıllarda cilt kanserlerinin tedavisinde yüzeysel brakiterapiye yönelik hem deneysel hem de teorik çalışmalar artmaktadır. Deneysel ve teorik çalışmaların sonuçları, yöntemin umut verici olduğunu göstermektedir. Yöntem, beta yayan radyonüklitlerin kullanımını içerir. Tedavinin başarısı için kullanılan radyonüklitlerin doz özelliklerinin iyice anlaşılması ve araştırılması büyük önem taşımaktadır. Bu çalışmada yaygın olarak kanser tedavisinde kullanılan 32P etiketli yama kaynağının yüzde derinlik dozu ve enine doz profilleri GAMOS Monte Carlo Simülasyon yöntemi kullanılarak incelenmiştir. Elde edilen simülasyon sonuçları literatürdeki çalışmalarla tutarlıdır. İncelenen 12,5 mm yarıçaplı cilt yaması kaynağı, boyutları 9,0 ile 11,0 mm arasında değişen cilt tümörlerinin tedavisi için uygundur. Cilt yama kaynağının boyutunun cilt tümörünün boyutuna uygun şekilde eşleştirilmesiyle, hem tümörü çevreleyen normal doku hem de tümörün altındaki normal doku, kıkırdak ve kemik korunabilir. 32P cilt yama kaynağı, henüz cilt dokusunun daha derin katmanlarına ulaşmamış, 1,0-2,0 mm kalınlığındaki erken evre tümörler için uygun bir seçenek olacaktır. Daha derin tümörler için yüksek enerjili beta parçacıkları yayan radyonüklitlerden yararlanılmalıdır.

Kaynakça

  • [1] International Agency for Research on Cancer. http://www.gco.iarc.fr. (Access Date: 30.01.2024).
  • [2] Stegman, S. J. 1986. Basal cell carcinoma and squamous cell carcinoma. Recognition and treatment. The Medical Clinics of North America, Vol. 70, p. 95-107. DOI: 10.1016/s0025-7125(16)30971-3
  • [3] Rass, K., Reichrath, J. 2008. Sunlight, Vitamin D and Skin Cancer. Springer, New York, 162p.
  • [4] Sedda, A. F., Rossi, G., Cipriani, C., Carrozzo, A. M., Donati, P. 2008. Dermatological high‐dose‐rate brachytherapy for the treatment of basal and squamous cell carcinoma. Clinical and Experimental Dermatology, Vol. 33, p. 745-749. DOI: 10.1111/j.1365-2230.2008.02852.x
  • [5] Macey, D. J., Williams, L. E., Breitz, H. B., Liu, A., Johnson, T. K., Zanzonico, P. B. 2001. AAPM Report 71. Medical Physics Publishing, USA, 73 p.
  • [6] Yeong, C. H., Cheng, M. H., Ng, K. H. 2014. Therapeutic radionuclides in nuclear medicine: current and future prospects. Journal of Zhejiang University Science B, Vol. 15, p. 845. DOI: 10.1631/jzus.B1400131
  • [7] Pashazadeh, A., Boese, A., Castro, N. J., Hutmacher, D. W., Friebe, M. 2019. A new 3D printed applicator with radioactive gel for conformal brachytherapy of superficial skin tumors. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 23-27 July, Berlin, Germany, 6979-6982.
  • [8] Mukherjee, A., Pandey, U., Sarma, H. D., Gupta, S. K., Ingle, A. D., Pillai, M. R. A., Venkatesh, M. 2003. Bioevaluation of radioactive bandages in a murine model of melanoma. International Journal of Radiation Biology, Vol. 79, p. 839-845. DOI: 10.1080/09553000310001610989
  • [9] Lee, J. D., Park, K. K., Lee, M. G., Kim, E. H., Rhim, K. J., Lee, J. T., Kim, J. R. 1997. Radionuclide therapy of skin cancers and Bowen's disease using a specially designed skin patch. Journal of Nuclear Medicine, Vol. 38, p. 697-702.
  • [10] Salgueiro, M. J., Duran, H., Palmieri, M., Pirchio, R., Nicolini, J., Ughetti, R., Zubillaga, M. 2008. Design and bioevaluation of a 32P-patch for brachytherapy of skin diseases. Applied Radiation and Isotopes, Vol. 66, p. 303-309. DOI: 10.1016/j.apradiso.2007.09.008
  • [11] Mukherjee, A., Pandey, U., Sarma, H. D., Pillai, M. R. A., Venkatesh, M. 2002. Preparation and evaluation of 90Y skin patches for therapy of superficial tumours in mice. Nuclear Medicine Communications, Vol. 23, p. 243-247.
  • [12] Saxena, S. K., Pandey, A. K., Tandon, P., Chakravarty, R., Reddy, A. V. R., Dash, A., Venkatesh, M. 2009. A novel approach to prepare 90Y EGMP patches for superficial brachytherapy. Applied Radiation and Isotopes, Vol. 67, p. 1416-1420. DOI: 10.1016/j.apradiso.2009.02.059
  • [13] Pashazadeh, A., Landes, R., Boese, A., Kreissl, M. C., Klopfleisch, M., Friebe, M. 2020. Superficial skin cancer therapy with Y‐90 microspheres: A feasibility study on patch preparation. Skin Research and Technology, Vol. 26, p. 25-29. DOI: 10.1111/srt.12758
  • [14] Dezarn, W. A., Cessna, J. T., DeWerd, L. A., Feng, W., Gates, V. L., Halama, J., Salem, R. 2011. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Medical Physics, Vol. 38(8), p. 4824-4845. DOI: 10.1118/1.3608909
  • [15] Briesmeister, J. F. 1986. MCNP: A General Monte Carlo Code for Neutron and Photon Transport. Los Alamos, 591p.
  • [16] Kawrakow, I. 2001. The EGSnrc Code System, Monte Carlo Simulation of Electron and Photon Transport. NRCC Report Pirs, 701s.
  • [17] Baró, J., Sempau, J., Fernández-Varea, J. M., Salvat, F. 1995. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B, Vol. 100, p. 31-46. DOI: 10.1016/0168-583X(95)00349-5
  • [18] Ferrari, A., Ranft, J., Sala, P. R., Fassò, A. 2005. FLUKA: A Multi-Particle Transport Code. CERN, Switzerland, 387p.
  • [19] Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., Geant4 Collaboration. 2003. GEANT4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A, Vol. 506, p. 250-303. DOI: 10.1016/S0168-9002(03)01368-8
  • [20] Allison, J., Amako, K., Apostolakis, J., Araujo, H. A., Dubois, P. A., Asai, M., Yoshida, H. 2006. Geant4 developments and applications. IEEE Transactions on Nuclear Science, Vol. 53, p. 270-278. DOI: 10.1109/TNS.2006.869826
  • [21] Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K., Autret, D., Morel, C. 2004. GATE: a simulation toolkit for PET and SPECT. Physics in Medicine & Biology, Vol. 49, p. 4543. DOI: 10.1088/0031-9155/49/19/007
  • [22] Arce, P., Rato, P., Canadas, M., Lagares, J. I. 2008. GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications. IEEE Nuclear Science Symposium Conference Record, 19-25 October, Germany, 3162-3168.
  • [23] Keith F. E. 2003. The beta spectra file to use for MCNP code http://www.doseinfo-radar.com/RADARHome.html. (Access Date: 30.01.2024).
  • [24] TECDOC, I. 2002. Calibration of photon and beta ray sources used in brachytherapy. International Atomic Energy Ageny 66p.
  • [25] De Paiva, E., Robatjazi, M., Pashazadeh, A. 2022. Calculations of beta radiation doses from multiwell Phosphorus-32 and Yttrium-90 applicators designed to be used in the treatment of superficial skin tumors: comparison of Monte Carlo and analytical methods. The European Physical Journal Plus, Vol. 137, p. 1-7. DOI: 10.1140/epjp/s13360-022-03116-5

Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation

Yıl 2025, Cilt: 27 Sayı: 79, 11 - 14

Öz

In recent years, both experimental and theoretical studies on superficial brachytherapy for the treatment of skin cancers have been increasing. The results of experimental and theoretical studies show that the method is promising. The method involves the use of beta-emitting radionuclides. It is crucial to thoroughly understand and investigate the dose characteristics of the radionuclides used for the success of the treatment. In this study, the percent depth dose and transverse dose profiles of the commonly used cancer treatment, the 32P-labeled skin patch source, were examined using the GAMOS Monte Carlo Simulation method. The simulation results obtained are consistent with studies in the literature. The examined 12.5 mm radius skin patch source is suitable for the treatment of skin tumors with sizes ranging from 9.0 to 11.0 mm. By appropriately matching the size of the skin patch source to the size of the skin tumor, both the normal tissue surrounding the tumor and the normal tissue, cartilage, and bone beneath the tumor can be preserved. The 32P skin patch source will be a suitable option for early-stage tumors with a thickness of 1.0-2.0 mm that have not yet reached the deeper layers of the skin tissue. For deeper tumors, radionuclides emitting high-energy beta particles should be utilized.

Kaynakça

  • [1] International Agency for Research on Cancer. http://www.gco.iarc.fr. (Access Date: 30.01.2024).
  • [2] Stegman, S. J. 1986. Basal cell carcinoma and squamous cell carcinoma. Recognition and treatment. The Medical Clinics of North America, Vol. 70, p. 95-107. DOI: 10.1016/s0025-7125(16)30971-3
  • [3] Rass, K., Reichrath, J. 2008. Sunlight, Vitamin D and Skin Cancer. Springer, New York, 162p.
  • [4] Sedda, A. F., Rossi, G., Cipriani, C., Carrozzo, A. M., Donati, P. 2008. Dermatological high‐dose‐rate brachytherapy for the treatment of basal and squamous cell carcinoma. Clinical and Experimental Dermatology, Vol. 33, p. 745-749. DOI: 10.1111/j.1365-2230.2008.02852.x
  • [5] Macey, D. J., Williams, L. E., Breitz, H. B., Liu, A., Johnson, T. K., Zanzonico, P. B. 2001. AAPM Report 71. Medical Physics Publishing, USA, 73 p.
  • [6] Yeong, C. H., Cheng, M. H., Ng, K. H. 2014. Therapeutic radionuclides in nuclear medicine: current and future prospects. Journal of Zhejiang University Science B, Vol. 15, p. 845. DOI: 10.1631/jzus.B1400131
  • [7] Pashazadeh, A., Boese, A., Castro, N. J., Hutmacher, D. W., Friebe, M. 2019. A new 3D printed applicator with radioactive gel for conformal brachytherapy of superficial skin tumors. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 23-27 July, Berlin, Germany, 6979-6982.
  • [8] Mukherjee, A., Pandey, U., Sarma, H. D., Gupta, S. K., Ingle, A. D., Pillai, M. R. A., Venkatesh, M. 2003. Bioevaluation of radioactive bandages in a murine model of melanoma. International Journal of Radiation Biology, Vol. 79, p. 839-845. DOI: 10.1080/09553000310001610989
  • [9] Lee, J. D., Park, K. K., Lee, M. G., Kim, E. H., Rhim, K. J., Lee, J. T., Kim, J. R. 1997. Radionuclide therapy of skin cancers and Bowen's disease using a specially designed skin patch. Journal of Nuclear Medicine, Vol. 38, p. 697-702.
  • [10] Salgueiro, M. J., Duran, H., Palmieri, M., Pirchio, R., Nicolini, J., Ughetti, R., Zubillaga, M. 2008. Design and bioevaluation of a 32P-patch for brachytherapy of skin diseases. Applied Radiation and Isotopes, Vol. 66, p. 303-309. DOI: 10.1016/j.apradiso.2007.09.008
  • [11] Mukherjee, A., Pandey, U., Sarma, H. D., Pillai, M. R. A., Venkatesh, M. 2002. Preparation and evaluation of 90Y skin patches for therapy of superficial tumours in mice. Nuclear Medicine Communications, Vol. 23, p. 243-247.
  • [12] Saxena, S. K., Pandey, A. K., Tandon, P., Chakravarty, R., Reddy, A. V. R., Dash, A., Venkatesh, M. 2009. A novel approach to prepare 90Y EGMP patches for superficial brachytherapy. Applied Radiation and Isotopes, Vol. 67, p. 1416-1420. DOI: 10.1016/j.apradiso.2009.02.059
  • [13] Pashazadeh, A., Landes, R., Boese, A., Kreissl, M. C., Klopfleisch, M., Friebe, M. 2020. Superficial skin cancer therapy with Y‐90 microspheres: A feasibility study on patch preparation. Skin Research and Technology, Vol. 26, p. 25-29. DOI: 10.1111/srt.12758
  • [14] Dezarn, W. A., Cessna, J. T., DeWerd, L. A., Feng, W., Gates, V. L., Halama, J., Salem, R. 2011. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Medical Physics, Vol. 38(8), p. 4824-4845. DOI: 10.1118/1.3608909
  • [15] Briesmeister, J. F. 1986. MCNP: A General Monte Carlo Code for Neutron and Photon Transport. Los Alamos, 591p.
  • [16] Kawrakow, I. 2001. The EGSnrc Code System, Monte Carlo Simulation of Electron and Photon Transport. NRCC Report Pirs, 701s.
  • [17] Baró, J., Sempau, J., Fernández-Varea, J. M., Salvat, F. 1995. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B, Vol. 100, p. 31-46. DOI: 10.1016/0168-583X(95)00349-5
  • [18] Ferrari, A., Ranft, J., Sala, P. R., Fassò, A. 2005. FLUKA: A Multi-Particle Transport Code. CERN, Switzerland, 387p.
  • [19] Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., Geant4 Collaboration. 2003. GEANT4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A, Vol. 506, p. 250-303. DOI: 10.1016/S0168-9002(03)01368-8
  • [20] Allison, J., Amako, K., Apostolakis, J., Araujo, H. A., Dubois, P. A., Asai, M., Yoshida, H. 2006. Geant4 developments and applications. IEEE Transactions on Nuclear Science, Vol. 53, p. 270-278. DOI: 10.1109/TNS.2006.869826
  • [21] Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K., Autret, D., Morel, C. 2004. GATE: a simulation toolkit for PET and SPECT. Physics in Medicine & Biology, Vol. 49, p. 4543. DOI: 10.1088/0031-9155/49/19/007
  • [22] Arce, P., Rato, P., Canadas, M., Lagares, J. I. 2008. GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications. IEEE Nuclear Science Symposium Conference Record, 19-25 October, Germany, 3162-3168.
  • [23] Keith F. E. 2003. The beta spectra file to use for MCNP code http://www.doseinfo-radar.com/RADARHome.html. (Access Date: 30.01.2024).
  • [24] TECDOC, I. 2002. Calibration of photon and beta ray sources used in brachytherapy. International Atomic Energy Ageny 66p.
  • [25] De Paiva, E., Robatjazi, M., Pashazadeh, A. 2022. Calculations of beta radiation doses from multiwell Phosphorus-32 and Yttrium-90 applicators designed to be used in the treatment of superficial skin tumors: comparison of Monte Carlo and analytical methods. The European Physical Journal Plus, Vol. 137, p. 1-7. DOI: 10.1140/epjp/s13360-022-03116-5
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genel Fizik
Bölüm Araştırma Makalesi
Yazarlar

Hakan Epik 0000-0001-8462-7246

Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 13 Şubat 2024
Kabul Tarihi 11 Mart 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 79

Kaynak Göster

APA Epik, H. (2025). Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 11-14.
AMA Epik H. Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation. DEUFMD. Ocak 2025;27(79):11-14.
Chicago Epik, Hakan. “Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, sy. 79 (Ocak 2025): 11-14.
EndNote Epik H (01 Ocak 2025) Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 11–14.
IEEE H. Epik, “Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation”, DEUFMD, c. 27, sy. 79, ss. 11–14, 2025.
ISNAD Epik, Hakan. “Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (Ocak 2025), 11-14.
JAMA Epik H. Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation. DEUFMD. 2025;27:11–14.
MLA Epik, Hakan. “Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 27, sy. 79, 2025, ss. 11-14.
Vancouver Epik H. Investigation of the Dose Distribution of 32P Skin Patch Source by GAMOS Monte Carlo Simulation. DEUFMD. 2025;27(79):11-4.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.