Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method

Yıl 2025, Cilt: 27 Sayı: 79, 121 - 125

Öz

The rapid advancements in the fields of artificial intelligence, cloud computing, big data analysis and internet of things have expanded the use of electronic devices and increased the demand for semiconductors. The Czochralski method, the most common and effective production technique for these materials, allows the production of single-crystal forms of elements such as Silicon (Si), Germanium (Ge), and various semiconductor compounds. In this study, the crystal structure, surface morphology and mechanical properties of a Si wafer, prepared by slicing a single crystal Si ingot grown by the Czochralski method, were determined by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and nanoindentation methods, respectively. XRD analysis of the silicon wafer confirmed its single-crystal structure, showing a cubic lattice structure and a single peak on the (100) plane, while SEM and AFM analyses determined that the surface is smooth, even, and undamaged. Hardness and elastic modulus values for the Si wafer, calculated from indentation tests using a Berkovich tip under different loads, were determined to be an average of 19 GPa and 255 GPa, respectively. These results hold vital importance for the advancement of semiconductor technologies. The design and production of electronic devices with superior performance and durability can be achieved with a comprehensive understanding of the mechanical properties of the materials.

Kaynakça

  • [1] Vegad, M., Bhatt, N.M., 2014. Review of Some Aspects of Single Crystal Growth Using Czochralski Crystal Growth Technique. Procedia Technology, Vol. 14, pp. 438-446.
  • [2] Wu, L., 2008. Numerical Simulation of Czochralski Bulk Crystal Growth Process: Investigation of Transport Effects in Melt and Gas Phases. PhD Thesis, Catholic University of Louvaine, Belgium, 190p.
  • [3] Rudolph, P., 2014. Handbook of crystal growth: Bulk crystal growth. Second Edition, Elsevier.
  • [4] Kasap, S.O., Capper P., 2017. Springer Handbook of Electronic and Photonic Materials. New York: Springer.
  • [5] Czochralski, J., 1917. A New Method for the Measurement of the Crystallization Rate of Metals. Zeitschrift des Vereines Deutscher Ingenieure, Vol. 61, pp. 245–351.
  • [6] Schneemeyer, L.F., 2003. Crystal Growth. In: Meyers, R., Third, E., (Eds.), Academic Press, New York, USA.
  • [7] Tilli, M., Paulasto-Kröckel, M., Petzold, M., Theuss, H., Motooka, T., Lindroos, V. (Eds.), 2020. Handbook of Silicon Based MEMS Materials and Technologies. Elsevier.
  • [8] Li, X., Ding, G., Ando, T., Shikida, M., Sato, K., 2006. Mechanical Properties of Mono-Crystalline Silicon Thin Films Measured by Different Methods. IEEE International Symposium on Micro Nano Mechanical and Human Science, Nagoya, Japan, pp. 1-6.
  • [9] Poon, B., Rittel, D., Ravichandran, G., 2008. An Analysis of Nanoindentation in Linearly Elastic Solids. International Journal of Solids and Structures, Vol. 45(24), pp. 6018-6033.
  • [10] Oliver, W.C., Pharr, G.M., 1992. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research, Vol. 7(6), pp. 1564-1583.
  • [11] Sattler, K.D. (Ed.), 2010. Handbook of Nanophysics: Functional Nanomaterials. CRC Press.
  • [12] Lee, W.S., Chen, T.H., Chang, S.L., 2009. Nanoindentation Response and Microstructure of Single-Crystal Silicon under Different Loads. IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, pp. 164-167.
  • [13] Yıldırım, S., 2017. Production and Development of Implant Dosimeters in Radiotherapy. PhD Thesis, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, 190p.
  • [14] Lin, N., Han, Y., Zhou, J., Zhang, K., Xu, T., Zhu, Y., Qian, Y., 2015. A Low Temperature Molten Salt Process for Aluminothermic Reduction of Silicon Oxides to Crystalline Si for Li-Ion Batteries. Energy & Environmental Science, Vol. 8(11), pp. 3187-3191.
  • [15] Lam, Y.C., Zheng, H.Y., Tjeung, R.T., Chen, X., 2009. Seeing the Invisible Laser Markings. Journal of Physics D: Applied Physics, Vol. 42(4), p. 42004.
  • [16] Ren, W., Wang, Y., Zhang, Z., Tan, Q., Zhong, Z., Su, F., 2016. Facile Patterning Silicon Wafer by Rochow Reaction over Patterned Cu-Based Catalysts. Applied Surface Science, Vol. 360, pp. 192–197.
  • [17] Shen, J., Yu, X., Zhang, Y., Zhong, H., Zhang, J., Qu, M., Le, X., 2015. Novel Microstructures on the Surfaces of Single Crystal Silicon Irradiated by Intense Pulsed Ion Beams. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 365, pp. 26–29.
  • [18] Xia, Y., Pu, X., Liu, J., Liang, J., Liu, P., Li, X., Yu, X., 2014. CuO Nanoleaves Enhance the c-Si Solar Cell Efficiency. Journal of Materials Chemistry A, Vol. 2(19), pp. 6796.
  • [19] Pandey, K., Pandey, P.M., 2017. Chemically Assisted Polishing of Monocrystalline Silicon Wafer Si (100) by DDMAF. Procedia Engineering, Vol. 184, pp. 178-184.
  • [20] Pandey, K., Pandey, P.M., 2019. An Integrated Application of Chemo-Ultrasonic Approach for Improving Surface Finish of Si (100) Using Double Disk Magnetic Abrasive Finishing. The International Journal of Advanced Manufacturing Technology, Vol. 103, pp. 3871-3886.
  • [21] Sun, Y.L., Zuo, D.W., Li, D.S., Chen, R.F., Wang, M., 2008. Mechanism of Brittle-Ductile Transition of Single Silicon Wafer Using Nanoindentation Techniques. Key Engineering Materials, Vol. 375, pp. 52-56.

Czochralski Metodu ile Büyütülen Silisyum Tek Kristalinin Yapısal ve Nanomekanik Özellikleri

Yıl 2025, Cilt: 27 Sayı: 79, 121 - 125

Öz

Yapay zeka, bulut bilişim, büyük veri analizi ve nesnelerin interneti alanlarındaki hızlı gelişmeler, elektronik cihazların kullanımını genişletmiş ve yarıiletkenlere olan talebi artırmıştır. Bu malzemelerin üretiminde en yaygın ve etkili yöntem olan Czochralski yöntemi, Silisyum (Si), Germanyum (Ge) gibi elementlerin ve çeşitli yarı iletken bileşiklerin tek kristal formunda üretilmesine olanak sağlar. Bu çalışmada, Czochralski yöntemi ile büyütülen silisyum tek kristal ingottan kesilerek hazırlanan Si plakanın (wafer) kristal yapısı, yüzey morfolojisi ve mekanik özellikleri sırasıyla x-ışınları kırınımı (XRD), taramalı elektron ve atomik kuvvet mikroskobu (SEM ve AFM) ve nanoindentasyon yöntemi ile tespit edilmiştir. Silisyum plakanın XRD analizi, kübik kafes yapısını ve (100) düzleminde tek bir pik göstererek tek kristal yapısını doğrularken, SEM ve AFM analizleriyle, yüzeyin düzgün, pürüzsüz ve hasarsız olduğu belirlenmiştir. Farklı yüklerde Berkovich tip uç kullanılarak yapılan indentasyon testleri sonucunda Si plakaya ait sertlik ve elastisite modülü değerleri ortalama 19 GPa ve 255 GPa olarak hesaplanmıştır. Bu sonuçlar, yarıiletken teknolojilerin ilerlemesi için hayati öneme sahiptir. Üstün performans ve dayanıklılığa sahip elektronik cihazların tasarımı ve üretimi, malzemelerin mekanik özelliklerinin kapsamlı bir şekilde anlaşılmasıyla gerçekleştirilebilir.

Kaynakça

  • [1] Vegad, M., Bhatt, N.M., 2014. Review of Some Aspects of Single Crystal Growth Using Czochralski Crystal Growth Technique. Procedia Technology, Vol. 14, pp. 438-446.
  • [2] Wu, L., 2008. Numerical Simulation of Czochralski Bulk Crystal Growth Process: Investigation of Transport Effects in Melt and Gas Phases. PhD Thesis, Catholic University of Louvaine, Belgium, 190p.
  • [3] Rudolph, P., 2014. Handbook of crystal growth: Bulk crystal growth. Second Edition, Elsevier.
  • [4] Kasap, S.O., Capper P., 2017. Springer Handbook of Electronic and Photonic Materials. New York: Springer.
  • [5] Czochralski, J., 1917. A New Method for the Measurement of the Crystallization Rate of Metals. Zeitschrift des Vereines Deutscher Ingenieure, Vol. 61, pp. 245–351.
  • [6] Schneemeyer, L.F., 2003. Crystal Growth. In: Meyers, R., Third, E., (Eds.), Academic Press, New York, USA.
  • [7] Tilli, M., Paulasto-Kröckel, M., Petzold, M., Theuss, H., Motooka, T., Lindroos, V. (Eds.), 2020. Handbook of Silicon Based MEMS Materials and Technologies. Elsevier.
  • [8] Li, X., Ding, G., Ando, T., Shikida, M., Sato, K., 2006. Mechanical Properties of Mono-Crystalline Silicon Thin Films Measured by Different Methods. IEEE International Symposium on Micro Nano Mechanical and Human Science, Nagoya, Japan, pp. 1-6.
  • [9] Poon, B., Rittel, D., Ravichandran, G., 2008. An Analysis of Nanoindentation in Linearly Elastic Solids. International Journal of Solids and Structures, Vol. 45(24), pp. 6018-6033.
  • [10] Oliver, W.C., Pharr, G.M., 1992. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research, Vol. 7(6), pp. 1564-1583.
  • [11] Sattler, K.D. (Ed.), 2010. Handbook of Nanophysics: Functional Nanomaterials. CRC Press.
  • [12] Lee, W.S., Chen, T.H., Chang, S.L., 2009. Nanoindentation Response and Microstructure of Single-Crystal Silicon under Different Loads. IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, pp. 164-167.
  • [13] Yıldırım, S., 2017. Production and Development of Implant Dosimeters in Radiotherapy. PhD Thesis, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, 190p.
  • [14] Lin, N., Han, Y., Zhou, J., Zhang, K., Xu, T., Zhu, Y., Qian, Y., 2015. A Low Temperature Molten Salt Process for Aluminothermic Reduction of Silicon Oxides to Crystalline Si for Li-Ion Batteries. Energy & Environmental Science, Vol. 8(11), pp. 3187-3191.
  • [15] Lam, Y.C., Zheng, H.Y., Tjeung, R.T., Chen, X., 2009. Seeing the Invisible Laser Markings. Journal of Physics D: Applied Physics, Vol. 42(4), p. 42004.
  • [16] Ren, W., Wang, Y., Zhang, Z., Tan, Q., Zhong, Z., Su, F., 2016. Facile Patterning Silicon Wafer by Rochow Reaction over Patterned Cu-Based Catalysts. Applied Surface Science, Vol. 360, pp. 192–197.
  • [17] Shen, J., Yu, X., Zhang, Y., Zhong, H., Zhang, J., Qu, M., Le, X., 2015. Novel Microstructures on the Surfaces of Single Crystal Silicon Irradiated by Intense Pulsed Ion Beams. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 365, pp. 26–29.
  • [18] Xia, Y., Pu, X., Liu, J., Liang, J., Liu, P., Li, X., Yu, X., 2014. CuO Nanoleaves Enhance the c-Si Solar Cell Efficiency. Journal of Materials Chemistry A, Vol. 2(19), pp. 6796.
  • [19] Pandey, K., Pandey, P.M., 2017. Chemically Assisted Polishing of Monocrystalline Silicon Wafer Si (100) by DDMAF. Procedia Engineering, Vol. 184, pp. 178-184.
  • [20] Pandey, K., Pandey, P.M., 2019. An Integrated Application of Chemo-Ultrasonic Approach for Improving Surface Finish of Si (100) Using Double Disk Magnetic Abrasive Finishing. The International Journal of Advanced Manufacturing Technology, Vol. 103, pp. 3871-3886.
  • [21] Sun, Y.L., Zuo, D.W., Li, D.S., Chen, R.F., Wang, M., 2008. Mechanism of Brittle-Ductile Transition of Single Silicon Wafer Using Nanoindentation Techniques. Key Engineering Materials, Vol. 375, pp. 52-56.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Saf Yarı İletkenler
Bölüm Araştırma Makalesi
Yazarlar

Tuncay Dikici 0000-0002-7004-9788

Serdar Yıldırım 0000-0002-3730-3473

Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 29 Şubat 2024
Kabul Tarihi 20 Mayıs 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 79

Kaynak Göster

APA Dikici, T., & Yıldırım, S. (2025). Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 121-125.
AMA Dikici T, Yıldırım S. Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method. DEUFMD. Ocak 2025;27(79):121-125.
Chicago Dikici, Tuncay, ve Serdar Yıldırım. “Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, sy. 79 (Ocak 2025): 121-25.
EndNote Dikici T, Yıldırım S (01 Ocak 2025) Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 121–125.
IEEE T. Dikici ve S. Yıldırım, “Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method”, DEUFMD, c. 27, sy. 79, ss. 121–125, 2025.
ISNAD Dikici, Tuncay - Yıldırım, Serdar. “Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (Ocak 2025), 121-125.
JAMA Dikici T, Yıldırım S. Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method. DEUFMD. 2025;27:121–125.
MLA Dikici, Tuncay ve Serdar Yıldırım. “Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 27, sy. 79, 2025, ss. 121-5.
Vancouver Dikici T, Yıldırım S. Structural and Nanomechanical Properties of Silicon Single Crystals Grown by the Czochralski Method. DEUFMD. 2025;27(79):121-5.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.