Araştırma Makalesi
BibTex RIS Kaynak Göster

Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems

Yıl 2025, Cilt: 27 Sayı: 80, 206 - 215, 23.05.2025
https://doi.org/10.21205/deufmd.2025278006

Öz

Nowadays, the thermal management of exhaust after-treatment (EAT) units is a paramount concern for diesel automotive vehicles to meet the stringent emission regulations. In general, EAT temperatures above 250oC are favorable for effective emission conversion efficiency. At low-loaded operations, it is difficult to achieve that since exhaust temperature remains much below 250oC. Therefore, this numerical work aims to elevate exhaust temperature at a light-loaded diesel engine model through adopting two different engine- base techniques, namely early intake valve closure (EIVC) and exhaust throttling (ET). Both individual and combined modes of EIVC and ET are examined for high exhaust temperatures in the system. ET enhances exhaust temperature over 250oC with high exhaust flow rate, which is desirable for rapid EAT warm up. However, it causes up to % 15 fuel penalty, which highly impairs its practicality. Unlike ET, EIVC is thermally efficient and can raise exhaust temperature above 250oC. Yet, it has the disadvantage of significantly lowered exhaust flow rates, which is inconsistent with fast EAT warm up. Simultaneous application of ET and EIVC, as EIVC+ET, can still keep exhaust temperature above 250oC with reduced fuel penalty (down to % 8.8). It also has the benefit of increased exhaust flow rates compared to EIVC mode, which substantially heightens heat transfer rates to the EAT unit (up to % 101). Thus, it can sustain accelerated EAT warm up in the system. EIVC+ET method is also seen to be effective to improve EAT stay-warm performance (delaying EAT cool off) as it enables high exhaust temperature and high exhaust rates, which is not possible with other methods examined in the analysis.

Kaynakça

  • [1] Rahman, S.A., Rizwanul Fattah, I.M., Ong, H.C., Zamri, M.F.M.A. 2021. State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles, Energies, Vol. 14(6), p. 1766. DOI: 10.3390/en14061766
  • [2] Olabi, A.G., Maizak, D.,Wilberforce, T. 2020. Review of the regulations and techniques to eliminate toxic emissions from diesel engine cars, Science of The Total Environment, Vol. 748, p. 141249. DOI: 10.1016/j.scitotenv.2020.141249
  • [3] Krishnamoorthi, M., Malayalamurthi, R., He, Z., Kandasamy, S. 2019. A review on low temperature combustion engines: Performance, combustion and emission characteristics, Renewable and Sustainable Energy Reviews, Vol. 116, s. 109404. DOI: 10.1016/j.rser.2019.109404
  • [4] Kocakulak, T., Arslan, T.A., Şahin, F., Solmaz, H., Ardebili, S.M.S., Calam, A 2023. Determination of optimum operating parameters of MWCNT-doped ethanol fueled HCCI engine for emission reduction, Science of the Total Environment, Vol. 895, p. 165196. DOI: 10.1016/j.scitotenv.2023.165196
  • [5] Huang, Z., Lyu, Z., Luo, P., Zhang, G., Ying, W., Chen, A., Xiao, H. 2023. Effects of methanol-ammonia blending ratio on performance and emission characteristics of a compression ignition engine, Journal of Marine Science and Engineering, Vol. 11(12), p. 2388. DOI: 10.3390/jmse11122388
  • [6] Wang, B., Yang, C., Wang, H., Hu, D., Wang, Y. 2023. Effect of Diesel-Ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance, Fuel, Vol. 331, p. 125865. DOI: 10.1016/j.fuel.2022.125865
  • [7] Uyaroğlu, A., Gürü, M., Kocakulak, T., Uyumaz, A., Solmaz, H. 2021. Combustion, performance and emission analyses of organic Manganese-Added crambe abyssinica biodiesel in a direct injection diesel engine, Fuel, Vol. 297, p. 120770. DOI: 10.1016/j.fuel.2021.120770
  • [8] Martinovic, F., Castoldi, L., Deorsola, F.A. 2021. Aftertreatment technologies for diesel engines: An overview of the combined systems, Catalysts, Vol. 11(6), p. 653. DOI: 10.3390/catal11060653
  • [9] Saarikoski, S., Järvinen, A., Markkula, L., Aurela, M., Kuittinen, N., Hoivala, J., Barreira, L.M., Aakko-Saksa, P., Lepistö, T., Marjanen, P., Timonen, H. 2024. Towards zero pollution vehicles by advanced fuels and exhaust aftertreatment technologies, Environmental Pollution, Vol. 347, p. 123665. DOI: 10.1016/j.envpol.2024.123665
  • [10] Mera, Z., Fonseca, N., Casanova, J., López, J.M. 2021. Influence of exhaust gas temperature and air-fuel ratio on NOx aftertreatment performance of five large passenger cars, Atmospheric Environment, Vol. 244, p. 117878. DOI: 10.1016/j.atmosenv.2020.117878
  • [11] Qi, X., Wang, Y., Liu, C., Liu, Q. 2023. The challenges and comprehensive evolution of Cu-based zeolite catalysts for SCR systems in diesel vehicles: A review, Catalysis Surveys from Asia, Vol. 27(3), pp. 181-206. DOI: 10.1007/s10563-022-09384-6
  • [12] Ye, S., Yap, Y.H., Kolackowski, S.T., Robinson, K., Lukyanov, D. 2012. Catalyst ‘light-off’ experiments on a diesel oxidation catalyst connected to a diesel engine – Methodology and techniques, Chemical Engineering Research and Design, Vol. 90(6), pp. 834-845. DOI: 10.1016/j.cherd.2011.10.003
  • [13] Wu, B., Jia, Z., guo Li, Z., yi Liu, G., lin Zhong, X. 2021. Different exhaust temperature management technologies for heavy-duty diesel engines with regard to thermal efficiency, Applied Thermal Engineering, Vol. 186, p. 116495. DOI: 10.1016/j.applthermaleng.2020.116
  • [14] Hu, J., Wu, Y., Liao, J., Cai, Z., Yu, Q. 2023. Heating and storage: A review on exhaust thermal management applications for a better trade-off between environment and economy in ICEs, Applied Thermal Engineering, Vol. 220, p. 119782. DOI: 10.1016/j.applthermaleng.2022.119782
  • [15] Garg, A., Magee, M., Ding, C., Roberts, L., Shaver, G., Koeberlein, E., Shute, R., Koeberlein, D., McCarthy Jr, J., Nielsen, D. 2016. Fuel-efficient exhaust thermal management using cylinder throttling via intake valve closing timing modulation, Proceedings of the Institution of Mechanical Engineers, part D: Journal of Automobile Engineering, Vol. 230(4), pp. 470-478. DOI: 10.1177/0954407015586896
  • [16] Basaran, H.U. 2021. Effects of Intake Valve Lift Form Modulation on Exhaust Temperature and Fuel Economy of Low-loaded Automotive Diesel Engine, International Journal of Automotive Science and Technology, Vol. 5(2), pp. 85-98. DOI: 10.30939/ijastech..796769
  • [17] Basaran, H.U., Ozsoysal, O.A. 2017. Effects of application of variable valve timing on the exhaust gas temperature improvement in a low-loaded diesel engine, Applied Thermal Engineering, Vol. 122, s. 758-767. DOI: 10.1016/j.applthermaleng.2017.04.098
  • [18] Wu, D., Deng, B., Li, M., Fu, J., Hou, K. 2020. Improvements on performance and emissions of a heavy duty diesel engine by throttling degree optimization: A steady-state and transient experimental study, Chemical Engineering and Processing-Process Intensification, Vol. 157, p. 108132. DOI: 10.1016/j.cep.2020.108132
  • [19] Sharma, A. K., Kreuzig, G., Gupta, A., Goyal, D. and Garg, V. 2024. The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non-EGR Medium Duty Diesel Engine’s Performance and Emissions. SAE Technical Paper No. 2024-26-0038. DOI: 10.4271/2024-26-0038
  • [20] Lyu,M., Alsulaiman, Y., Hall, M.J., Matthews, R.D. 2022. Impacts of Intake Throttling on the Combustion Characteristics and Emissions of a Light-Duty Diesel Engine under the Idle Mode, Energies, Vol. 15(23), p. 8846. DOI: 10.3390/en15238846
  • [21] Frackowiak,M., Xu, H., Wyszynski, M.L., Misztal, J., Qiao, J. 2009. The effect of exhaust throttling on hcci-alternative way to control egr and in-cylinder flow, SAE International Journal of Fuels and Lubricants, Vol. 1(1), p. 1277-1289. DOI: 10.4271/2008-01-1739
  • [22] Kang, W., Pyo, S., Kim, H. 2021. Comparison of intake and exhaust throttling for diesel particulate filter active regeneration of non-road diesel engine with mechanical fuel injection pump, International Journal of Engine Research, Vol. 22(7), pp. 2337-2346. DOI: 10.1177/1468087420926030
  • [23] Gao, J., Tian, G., Sorniotti, A., Karci, A.E., Di Palo, R. 2019. Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up, Applied Thermal Engineering, Vol. 147, pp. 177-187. DOI: 10.1016/j.applthermaleng.2018.10.037
  • [24] Wang, Z., Shen, L., Lei, J., Yao, G., Wang, G. 2022. Impact characteristics of post injection on exhaust temperature and hydrocarbon emissions of a diesel engine, Energy Reports, Vol. 8, pp. 4332-4343. DOI: 10.1016/j.egyr.2022.03.080
  • [25] Başaran, H.Ü. 2023. Fuel injection strategies to improve after-treatment thermal management in diesel engine systems: A review, Advancing Through Applied Science and Technology, s. 59-84. IKSAD Publishing House. DOI: https://dx.doi.org/10.5281/zenodo.8428506
  • [26] Nie, X., Bi, Y., Shen, L., Liu, S., Yan, J., Zhang, S. 2024. Study on transient temperature characteristics of SCR under different post-injection strategies, Fuel, Vol. 366, p. 131312. DOI: 10.1016/j.fuel.2024.131312
  • [27] Ovaska, T., Spoof-Tuomi, K., Niemi, S., Valkjärvi, P., Maunula, T., Mikulski, M., Lehtoranta, K., Alanen, J., Happonen, M. 2025. Effect of late diesel injection on close-coupled SCR+ASC during DPF regeneration period, Fuel, Vol. 381, p. 133406. DOI: 10.1016/j.fuel.2024.133406
  • [28] Wu, G., Feng, G., Li, Y., Ling, T., Peng, X., Su, Z., Zhao, X. 2024. A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches, Energies, Vol. 17(3), p. 584. DOI: 10.3390/en17030584
  • [29] Başaran, H.Ü. 2024. Enhanced after-treatment warm up in diesel vehicles through modulating fuel injection and exhaust valve closure timing, European Mechanical Science, Vol. 8(2), pp. 93-103. DOI: 10.26701/ems.1441861
  • [30] Guan, W., Pedrozo, V.B., Zhao, H., Ban, Z., Lin, T. 2020. Miller cycle combined with exhaust gas recirculation and post-fuel injection for emissions and exhaust gas temperature control of a heavy-duty diesel engine, International Journal of Engine Research, Vol. 21(8), pp. 1381-1397. DOI: 10.1177/1468087419830019
  • [31] Joshi, M.C., Gosala, D., Shaver, G.M., McCarthy, J., Farrell, L. 2021. Exhaust valve profile modulation for improved diesel engine curb idle aftertreatment thermal management, International Journal of Engine Research, Vol. 22(10), pp. 3179-3195. DOI: 10.1177/1468087420969101
  • [32] Basaran, H.U. 2023. Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller cycle and Delayed Exhaust Valve Opening, Energies, Vol. 16(12), pp. 4542. DOI: 10.3390/en16124542
  • [33] Tziolas, V., Koltsakis, G., Zingopis, N., Chatzipartali, K. 2024. Evaluation of thermal management technologies for fuel efficient cold-start emissions reduction in diesel engines, International Journal of Engine Research, Vol. 25(3), pp. 494-512. DOI: 10.1177/14680874231196969
  • [34] Lotus Engineering 2013. Getting Started Using Lotus Engine Simulation. https://lotusproactive.files.wordpress.com/2013/08/getting-started-with-lotus-engine-simulation.pdf (Access date: 10.03.2024).
  • [35] Lotus Engineering Software. Lotus Engine Simulation (LES) Version 6.01A, Lotus Engineering, Norfolk, UK.
  • [36] Heywood, J.B. 1988. Internal Combustion Engine Fundamentals, McGraw-Hill, Inc., Book Company: New York, NY, USA.
  • [37] Sandoval, D., Heywood, J.B. 2003. An improved friction model for spark-ignition engines, SAE Technical Paper No. 2003-01-0725. DOI: 10.4271/2003-01-0725
  • [38] Stanton, D.W. 2013. Systematic development of highly efficient and clean engines to meet future commercial vehicle greenhouse gas regulations, SAE International Journal of Engines, Vol. 6(2013-01-2421), pp. 1395-1480. DOI: 10.4271/2013-01-2421
  • [39] Ding, C., Roberts, L., Fain, D.J., Ramesh, A.K., Shaver, G.M., McCarthy Jr, J., Ruth, M., Koeberlein, E., Holloway, E.A., Nielsen, D. 2016. Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation, International Journal of Engine Research, Vol. 17(6), pp. 619-630. DOI: 10.1177/1468087415597413
  • [40] Zammit, J.P., McGhee, M.J., Shayler, P.J., Law, T. and Pegg, I. 2015. The effects of early inlet valve closing and cylinder disablement on fuel economy and emissions of a direct injection diesel engine. Energy, Vol. 79, pp. 100-110. DOI: 10.1016/j.energy.2014.10.065
  • [41] Garcia, E., Triantopoulos, V., Boehman, A., Taylor, M. and Li, J. 2020. Impact of miller cycle strategies on combustion characteristics, emissions and efficiency in heavy-duty diesel engines. SAE Technical Paper No. 2020-01-1127. DOI: 10.4271/2020-01-1127
  • [42] Gehrke, S., Kovacs, D., Eilts, P., Rempel, A., Eckert, P. 2013. Investigation of VVA-based exhaust management strategies by means of a HD single cylinder research engine and rapid prototyping systems. SAE International Journal of Commercial Vehicles, Vol. 6(2013-01-0587), pp. 47-61. DOI: 10.4271/2013-01-0587
  • [43] Gustafson, R. J. Early intake valve closing and variable valve timing assembly and method. US Patent US8375904B2, USA, 2013.
  • [44] Ricco, R., Stucchi, S., Gargano, M., De Michele, O., Altamura, C. System for actuation of an intake valve of an internal combustion engine. European Patent EP4074945B1. 2023.
  • [45] Kim, J., Vallinmaki, M., Tuominen, T., Mikulski, M. 2024. Variable valve actuation for efficient exhaust thermal management in an off-road diesel engine, Applied Thermal Engineering, Vol. 246, p. 122940. DOI: 10.1016/j.applthermaleng.2024.122940
  • [46] Pelić, V., Mrakovčić, T., Medica-Viola, V., Valčić, M. 2020. Effect of early closing of the inlet valve on fuel consumption and temperature in a medium speed marine diesel engine cylinder, Journal of Marine Science and Engineering, Vol. 8(10), p. 747. DOI: 10.3390/jmse8100747
  • [47] Zhang, J., Wang, S., Wang, Z., Xie, Z., Chang, Y. 2025. Investigation of intake and exhaust performance in heavy-duty diesel engines with variable Miller cycle, Applied Thermal Engineering, Vol. 265, p. 125547. DOI: 10.1016/j.applthermaleng.2025.125547

Dizel Motor Sistemlerinde Hızlı Egzoz Son-işlem Isınması Sağlamak için Erken Emme Valfi Kapatma ve Egzoz Kısma İşleminin Birleştirilmesi

Yıl 2025, Cilt: 27 Sayı: 80, 206 - 215, 23.05.2025
https://doi.org/10.21205/deufmd.2025278006

Öz

Günümüzde, egzoz son işlem (ESİ) ünitelerinin ısıl yönetimi, dizel otomotiv araçlarının sıkı emisyon düzenlemelerini karşılaması açısından büyük önem taşımaktadır. Genel olarak, etkili emisyon dönüşüm verimliliği için 250oC’nin üzerindeki ESİ sıcaklıkları uygun olmaktadır. Düşük yüklü operasyonlarda egzoz sıcaklığı 250oC’nin çok altında kaldığı için bunu başarmak güçleşmektedir. Bu nedenle, bu sayısal çalışma, erken emme valfi kapatma (EEVK) ve egzoz kısılması (EK) olmak üzere iki farklı motora bağlı tekniği kullanarak düşük yüklü bir dizel motor modelinde egzoz sıcaklığını yükseltmeyi amaçlamaktadır. Sistemde yüksek egzoz sıcaklığı elde etmek için EEVK ve EK’nin hem tekil hem de birleşik modları incelenmiştir. EK, hızlı ESİ ısınması için ihtiyaç duyulan yüksek egzoz akış hızıyla egzoz sıcaklığını 250oC’nin üzerine çıkarmaktadır. Ancak bu metot % 15’e varan yakıt tüketimi artışına neden olmakta ve bu da pratikte uygulanabilmesini oldukça zorlaştırmaktadır. EK’den farklı olarak, EEVK termal verimliliği iyileştirmekte ve egzoz sıcaklığını 250oC’nin üzerine çıkarabilmektedir. Ancak ESİ ünitesinin hızlı ısınmasını aksatan, ciddi ölçüde düşürülmüş egzoz akışı hızı gibi bir dezavantajı bulunmaktadır. EK ve EEVK’nin EK+EEVK olarak eş zamanlı uygulanması, azaltılmış yakıt tüketimi artışı (% 8.8’e kadar) ile egzoz sıcaklığını hala 250oC’nin üzerinde tutabilmektedir. Ayrıca, EEVK moduna kıyasla daha yüksek egzoz akış hızı avantajına da sahiptir ki, bu da ESİ ünitesine olan ısı transfer oranlarını önemli ölçüde (% 101’e kadar) arttırmaktadır. Bu nedenle, ESİ ünitesinin motor sisteminde çok daha hızlı ısınmasına sağlayabilmektedir. EEVK+EK yönteminin, analizde incelenen diğer yöntemlerle mümkün olmayan, yüksek egzoz sıcaklığına ve yüksek egzoz akış hızlarına olanak verdiği için ESİ ünitesi sıcak kalma performansını (ESİ ünitesi soğumasının geciktirilmesi) iyileştirmede de etkili olduğu görülmüştür.

Kaynakça

  • [1] Rahman, S.A., Rizwanul Fattah, I.M., Ong, H.C., Zamri, M.F.M.A. 2021. State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles, Energies, Vol. 14(6), p. 1766. DOI: 10.3390/en14061766
  • [2] Olabi, A.G., Maizak, D.,Wilberforce, T. 2020. Review of the regulations and techniques to eliminate toxic emissions from diesel engine cars, Science of The Total Environment, Vol. 748, p. 141249. DOI: 10.1016/j.scitotenv.2020.141249
  • [3] Krishnamoorthi, M., Malayalamurthi, R., He, Z., Kandasamy, S. 2019. A review on low temperature combustion engines: Performance, combustion and emission characteristics, Renewable and Sustainable Energy Reviews, Vol. 116, s. 109404. DOI: 10.1016/j.rser.2019.109404
  • [4] Kocakulak, T., Arslan, T.A., Şahin, F., Solmaz, H., Ardebili, S.M.S., Calam, A 2023. Determination of optimum operating parameters of MWCNT-doped ethanol fueled HCCI engine for emission reduction, Science of the Total Environment, Vol. 895, p. 165196. DOI: 10.1016/j.scitotenv.2023.165196
  • [5] Huang, Z., Lyu, Z., Luo, P., Zhang, G., Ying, W., Chen, A., Xiao, H. 2023. Effects of methanol-ammonia blending ratio on performance and emission characteristics of a compression ignition engine, Journal of Marine Science and Engineering, Vol. 11(12), p. 2388. DOI: 10.3390/jmse11122388
  • [6] Wang, B., Yang, C., Wang, H., Hu, D., Wang, Y. 2023. Effect of Diesel-Ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance, Fuel, Vol. 331, p. 125865. DOI: 10.1016/j.fuel.2022.125865
  • [7] Uyaroğlu, A., Gürü, M., Kocakulak, T., Uyumaz, A., Solmaz, H. 2021. Combustion, performance and emission analyses of organic Manganese-Added crambe abyssinica biodiesel in a direct injection diesel engine, Fuel, Vol. 297, p. 120770. DOI: 10.1016/j.fuel.2021.120770
  • [8] Martinovic, F., Castoldi, L., Deorsola, F.A. 2021. Aftertreatment technologies for diesel engines: An overview of the combined systems, Catalysts, Vol. 11(6), p. 653. DOI: 10.3390/catal11060653
  • [9] Saarikoski, S., Järvinen, A., Markkula, L., Aurela, M., Kuittinen, N., Hoivala, J., Barreira, L.M., Aakko-Saksa, P., Lepistö, T., Marjanen, P., Timonen, H. 2024. Towards zero pollution vehicles by advanced fuels and exhaust aftertreatment technologies, Environmental Pollution, Vol. 347, p. 123665. DOI: 10.1016/j.envpol.2024.123665
  • [10] Mera, Z., Fonseca, N., Casanova, J., López, J.M. 2021. Influence of exhaust gas temperature and air-fuel ratio on NOx aftertreatment performance of five large passenger cars, Atmospheric Environment, Vol. 244, p. 117878. DOI: 10.1016/j.atmosenv.2020.117878
  • [11] Qi, X., Wang, Y., Liu, C., Liu, Q. 2023. The challenges and comprehensive evolution of Cu-based zeolite catalysts for SCR systems in diesel vehicles: A review, Catalysis Surveys from Asia, Vol. 27(3), pp. 181-206. DOI: 10.1007/s10563-022-09384-6
  • [12] Ye, S., Yap, Y.H., Kolackowski, S.T., Robinson, K., Lukyanov, D. 2012. Catalyst ‘light-off’ experiments on a diesel oxidation catalyst connected to a diesel engine – Methodology and techniques, Chemical Engineering Research and Design, Vol. 90(6), pp. 834-845. DOI: 10.1016/j.cherd.2011.10.003
  • [13] Wu, B., Jia, Z., guo Li, Z., yi Liu, G., lin Zhong, X. 2021. Different exhaust temperature management technologies for heavy-duty diesel engines with regard to thermal efficiency, Applied Thermal Engineering, Vol. 186, p. 116495. DOI: 10.1016/j.applthermaleng.2020.116
  • [14] Hu, J., Wu, Y., Liao, J., Cai, Z., Yu, Q. 2023. Heating and storage: A review on exhaust thermal management applications for a better trade-off between environment and economy in ICEs, Applied Thermal Engineering, Vol. 220, p. 119782. DOI: 10.1016/j.applthermaleng.2022.119782
  • [15] Garg, A., Magee, M., Ding, C., Roberts, L., Shaver, G., Koeberlein, E., Shute, R., Koeberlein, D., McCarthy Jr, J., Nielsen, D. 2016. Fuel-efficient exhaust thermal management using cylinder throttling via intake valve closing timing modulation, Proceedings of the Institution of Mechanical Engineers, part D: Journal of Automobile Engineering, Vol. 230(4), pp. 470-478. DOI: 10.1177/0954407015586896
  • [16] Basaran, H.U. 2021. Effects of Intake Valve Lift Form Modulation on Exhaust Temperature and Fuel Economy of Low-loaded Automotive Diesel Engine, International Journal of Automotive Science and Technology, Vol. 5(2), pp. 85-98. DOI: 10.30939/ijastech..796769
  • [17] Basaran, H.U., Ozsoysal, O.A. 2017. Effects of application of variable valve timing on the exhaust gas temperature improvement in a low-loaded diesel engine, Applied Thermal Engineering, Vol. 122, s. 758-767. DOI: 10.1016/j.applthermaleng.2017.04.098
  • [18] Wu, D., Deng, B., Li, M., Fu, J., Hou, K. 2020. Improvements on performance and emissions of a heavy duty diesel engine by throttling degree optimization: A steady-state and transient experimental study, Chemical Engineering and Processing-Process Intensification, Vol. 157, p. 108132. DOI: 10.1016/j.cep.2020.108132
  • [19] Sharma, A. K., Kreuzig, G., Gupta, A., Goyal, D. and Garg, V. 2024. The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non-EGR Medium Duty Diesel Engine’s Performance and Emissions. SAE Technical Paper No. 2024-26-0038. DOI: 10.4271/2024-26-0038
  • [20] Lyu,M., Alsulaiman, Y., Hall, M.J., Matthews, R.D. 2022. Impacts of Intake Throttling on the Combustion Characteristics and Emissions of a Light-Duty Diesel Engine under the Idle Mode, Energies, Vol. 15(23), p. 8846. DOI: 10.3390/en15238846
  • [21] Frackowiak,M., Xu, H., Wyszynski, M.L., Misztal, J., Qiao, J. 2009. The effect of exhaust throttling on hcci-alternative way to control egr and in-cylinder flow, SAE International Journal of Fuels and Lubricants, Vol. 1(1), p. 1277-1289. DOI: 10.4271/2008-01-1739
  • [22] Kang, W., Pyo, S., Kim, H. 2021. Comparison of intake and exhaust throttling for diesel particulate filter active regeneration of non-road diesel engine with mechanical fuel injection pump, International Journal of Engine Research, Vol. 22(7), pp. 2337-2346. DOI: 10.1177/1468087420926030
  • [23] Gao, J., Tian, G., Sorniotti, A., Karci, A.E., Di Palo, R. 2019. Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up, Applied Thermal Engineering, Vol. 147, pp. 177-187. DOI: 10.1016/j.applthermaleng.2018.10.037
  • [24] Wang, Z., Shen, L., Lei, J., Yao, G., Wang, G. 2022. Impact characteristics of post injection on exhaust temperature and hydrocarbon emissions of a diesel engine, Energy Reports, Vol. 8, pp. 4332-4343. DOI: 10.1016/j.egyr.2022.03.080
  • [25] Başaran, H.Ü. 2023. Fuel injection strategies to improve after-treatment thermal management in diesel engine systems: A review, Advancing Through Applied Science and Technology, s. 59-84. IKSAD Publishing House. DOI: https://dx.doi.org/10.5281/zenodo.8428506
  • [26] Nie, X., Bi, Y., Shen, L., Liu, S., Yan, J., Zhang, S. 2024. Study on transient temperature characteristics of SCR under different post-injection strategies, Fuel, Vol. 366, p. 131312. DOI: 10.1016/j.fuel.2024.131312
  • [27] Ovaska, T., Spoof-Tuomi, K., Niemi, S., Valkjärvi, P., Maunula, T., Mikulski, M., Lehtoranta, K., Alanen, J., Happonen, M. 2025. Effect of late diesel injection on close-coupled SCR+ASC during DPF regeneration period, Fuel, Vol. 381, p. 133406. DOI: 10.1016/j.fuel.2024.133406
  • [28] Wu, G., Feng, G., Li, Y., Ling, T., Peng, X., Su, Z., Zhao, X. 2024. A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches, Energies, Vol. 17(3), p. 584. DOI: 10.3390/en17030584
  • [29] Başaran, H.Ü. 2024. Enhanced after-treatment warm up in diesel vehicles through modulating fuel injection and exhaust valve closure timing, European Mechanical Science, Vol. 8(2), pp. 93-103. DOI: 10.26701/ems.1441861
  • [30] Guan, W., Pedrozo, V.B., Zhao, H., Ban, Z., Lin, T. 2020. Miller cycle combined with exhaust gas recirculation and post-fuel injection for emissions and exhaust gas temperature control of a heavy-duty diesel engine, International Journal of Engine Research, Vol. 21(8), pp. 1381-1397. DOI: 10.1177/1468087419830019
  • [31] Joshi, M.C., Gosala, D., Shaver, G.M., McCarthy, J., Farrell, L. 2021. Exhaust valve profile modulation for improved diesel engine curb idle aftertreatment thermal management, International Journal of Engine Research, Vol. 22(10), pp. 3179-3195. DOI: 10.1177/1468087420969101
  • [32] Basaran, H.U. 2023. Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller cycle and Delayed Exhaust Valve Opening, Energies, Vol. 16(12), pp. 4542. DOI: 10.3390/en16124542
  • [33] Tziolas, V., Koltsakis, G., Zingopis, N., Chatzipartali, K. 2024. Evaluation of thermal management technologies for fuel efficient cold-start emissions reduction in diesel engines, International Journal of Engine Research, Vol. 25(3), pp. 494-512. DOI: 10.1177/14680874231196969
  • [34] Lotus Engineering 2013. Getting Started Using Lotus Engine Simulation. https://lotusproactive.files.wordpress.com/2013/08/getting-started-with-lotus-engine-simulation.pdf (Access date: 10.03.2024).
  • [35] Lotus Engineering Software. Lotus Engine Simulation (LES) Version 6.01A, Lotus Engineering, Norfolk, UK.
  • [36] Heywood, J.B. 1988. Internal Combustion Engine Fundamentals, McGraw-Hill, Inc., Book Company: New York, NY, USA.
  • [37] Sandoval, D., Heywood, J.B. 2003. An improved friction model for spark-ignition engines, SAE Technical Paper No. 2003-01-0725. DOI: 10.4271/2003-01-0725
  • [38] Stanton, D.W. 2013. Systematic development of highly efficient and clean engines to meet future commercial vehicle greenhouse gas regulations, SAE International Journal of Engines, Vol. 6(2013-01-2421), pp. 1395-1480. DOI: 10.4271/2013-01-2421
  • [39] Ding, C., Roberts, L., Fain, D.J., Ramesh, A.K., Shaver, G.M., McCarthy Jr, J., Ruth, M., Koeberlein, E., Holloway, E.A., Nielsen, D. 2016. Fuel efficient exhaust thermal management for compression ignition engines during idle via cylinder deactivation and flexible valve actuation, International Journal of Engine Research, Vol. 17(6), pp. 619-630. DOI: 10.1177/1468087415597413
  • [40] Zammit, J.P., McGhee, M.J., Shayler, P.J., Law, T. and Pegg, I. 2015. The effects of early inlet valve closing and cylinder disablement on fuel economy and emissions of a direct injection diesel engine. Energy, Vol. 79, pp. 100-110. DOI: 10.1016/j.energy.2014.10.065
  • [41] Garcia, E., Triantopoulos, V., Boehman, A., Taylor, M. and Li, J. 2020. Impact of miller cycle strategies on combustion characteristics, emissions and efficiency in heavy-duty diesel engines. SAE Technical Paper No. 2020-01-1127. DOI: 10.4271/2020-01-1127
  • [42] Gehrke, S., Kovacs, D., Eilts, P., Rempel, A., Eckert, P. 2013. Investigation of VVA-based exhaust management strategies by means of a HD single cylinder research engine and rapid prototyping systems. SAE International Journal of Commercial Vehicles, Vol. 6(2013-01-0587), pp. 47-61. DOI: 10.4271/2013-01-0587
  • [43] Gustafson, R. J. Early intake valve closing and variable valve timing assembly and method. US Patent US8375904B2, USA, 2013.
  • [44] Ricco, R., Stucchi, S., Gargano, M., De Michele, O., Altamura, C. System for actuation of an intake valve of an internal combustion engine. European Patent EP4074945B1. 2023.
  • [45] Kim, J., Vallinmaki, M., Tuominen, T., Mikulski, M. 2024. Variable valve actuation for efficient exhaust thermal management in an off-road diesel engine, Applied Thermal Engineering, Vol. 246, p. 122940. DOI: 10.1016/j.applthermaleng.2024.122940
  • [46] Pelić, V., Mrakovčić, T., Medica-Viola, V., Valčić, M. 2020. Effect of early closing of the inlet valve on fuel consumption and temperature in a medium speed marine diesel engine cylinder, Journal of Marine Science and Engineering, Vol. 8(10), p. 747. DOI: 10.3390/jmse8100747
  • [47] Zhang, J., Wang, S., Wang, Z., Xie, Z., Chang, Y. 2025. Investigation of intake and exhaust performance in heavy-duty diesel engines with variable Miller cycle, Applied Thermal Engineering, Vol. 265, p. 125547. DOI: 10.1016/j.applthermaleng.2025.125547
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İçten Yanmalı Motorlar
Bölüm Araştırma Makalesi
Yazarlar

Hasan Üstün Başaran 0000-0002-1491-0465

Erken Görünüm Tarihi 12 Mayıs 2025
Yayımlanma Tarihi 23 Mayıs 2025
Gönderilme Tarihi 11 Mart 2024
Kabul Tarihi 10 Ağustos 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 80

Kaynak Göster

APA Başaran, H. Ü. (2025). Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 27(80), 206-215. https://doi.org/10.21205/deufmd.2025278006
AMA Başaran HÜ. Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems. DEUFMD. Mayıs 2025;27(80):206-215. doi:10.21205/deufmd.2025278006
Chicago Başaran, Hasan Üstün. “Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27, sy. 80 (Mayıs 2025): 206-15. https://doi.org/10.21205/deufmd.2025278006.
EndNote Başaran HÜ (01 Mayıs 2025) Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 80 206–215.
IEEE H. Ü. Başaran, “Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems”, DEUFMD, c. 27, sy. 80, ss. 206–215, 2025, doi: 10.21205/deufmd.2025278006.
ISNAD Başaran, Hasan Üstün. “Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/80 (Mayıs2025), 206-215. https://doi.org/10.21205/deufmd.2025278006.
JAMA Başaran HÜ. Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems. DEUFMD. 2025;27:206–215.
MLA Başaran, Hasan Üstün. “Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, c. 27, sy. 80, 2025, ss. 206-15, doi:10.21205/deufmd.2025278006.
Vancouver Başaran HÜ. Combining Early Intake Valve Closure and Exhaust Throttling to Achieve Rapid Exhaust After-treatment Warm up in Diesel Engine Systems. DEUFMD. 2025;27(80):206-15.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.