COVID-19'un ortaya çıkmasıyla birlikte, dünya genelinde bilim insanları ve uluslar bu salgınla mücadeleye odaklandı. Hala süregelen araştırmalar, hastalığın yayılma ve korunma yöntemleri, güvenlik için geliştirilen aşılar ve ilaçlar gibi konuları dünya gündeminin merkezine yerleştiriyor. Bu noktada, salgının kontrolünde kullanılan testlerin doğruluğu kritik bir önem taşımaktadır. Yeni varyantların ortaya çıktığı bu dönemde, yapay zekâ ve hastalık teşhis süreçlerinin entegrasyonu, müdahale ve önlem alma hızını artıracaktır. Bu çalışmada, salgın yönetimine katkı sağlamak amacıyla makine öğrenmesi yöntemleri kullanılarak bireylerin kan gazı değerlerinden COVID-19 test sonuçlarını tahmin etmek hedeflenmiştir. Van Yüzüncü Yıl Üniversitesi Dursun Odabaş Tıp Merkezi'nden elde edilen veri seti, bireylerden alınan kan gazı analiz örneklerinden (109 pozitif, 1146 negatif) oluşmaktadır. Bu veriler kullanılarak, bireylerin test sonuçlarını belirlemede etkili bir yöntemin geliştirilmesi amaçlanmıştır. Bu hedef doğrultusunda, COVID-19 hastalığının tahmini için Rastgele Orman (RO), Destek Vektör Makineleri (DVM), Yapay Sinir Ağları (YSA), Karar Ağaçları (KA), Aşırı Gradyan Artırma (AGA), K-en Yakın Komşu (KNN) ve Naive Bayes (NB) gibi makine öğrenmesi algoritmaları kullanılmıştır. Analizler sonucunda, KNN yönteminin %97.61 ile diğer yöntemlere kıyasla daha yüksek bir başarı sağladığı görülmüştür. Makine öğrenmesi tekniklerinin hastalık tespit ve erken müdahale gibi durumlarda önemli bir rol oynayabileceği ve bu tür yaklaşımların salgınla mücadelede etkili araçlar sunabileceği anlaşılmaktadır.
Birincil Dil | Türkçe |
---|---|
Konular | Bilgi Sistemleri Eğitimi, Yapay Zeka (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 8 Ağustos 2024 |
Gönderilme Tarihi | 30 Mayıs 2024 |
Kabul Tarihi | 4 Ağustos 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 7 Sayı: 1 |