BibTex RIS Kaynak Göster

Modern Orthodontic Diagnostic and Treatment Tools

Yıl 2018, , 64 - 70, 01.06.2018
https://doi.org/10.21306/jids.2018.127

Öz

Advances in technology and material sciences have enable the acquisition and storage of patient records by digital methods, a more detailed analysis of the data obtained. Today, orthodontic therapy with clear aligner, customized labial or lingual treatment systems and orthognatic surgery application can be done, thanks to 3D imaging and production technologies. Additionally, recent improvements have led up the measurement of the hours of wear of removable orthodontic appliances and using lasers in orthodontics. In the present study, studies include modern diagnostic and treatment tools were collected and and the topic was revised

Kaynakça

  • 1. Weinberger, B., The contribution of orthodontia to dentistry. Dent Cosmos, 1936. 78: p. 844-53.
  • 2. Jackson, V.H., Some methods in regulating. Dent Cosmos, 1886. 28: p. 372-5.
  • 3. Rogers, A.P., Evolution, development, and application of myofunctional therapy in orthodontics. American Journal of Orthodontics and Oral Surgery, 1939. 25(1): p. 1-19.
  • 4. Hitchcock, H.P., Pitfalls of the Crozat appliance. American journal of orthodontics, 1972. 62(5): p. 461-468.
  • 5. Thompson Jr, W., Dr. Robert HW Strang 1881–1982. The Angle Orthodontist, 1983. 53(1): p. 3-6.
  • 6. Salzmann, J.A., Principles of orthodontics. 1950: Lippincott.
  • 7. Shankland, W.M., The American Association of Orthodontists: the biography of a specialty organization. 1971: American Association of Orthodontists.
  • 8. Uppgaard, R., Bates v State Bar of Arizona, 433 US 350 (1977). Northwest dentistry, 2007. 86(4): p. 73-74.
  • 9. Van Noort, R., The future of dental devices is digital. Dental materials, 2012. 28(1): p. 3-12.
  • 10. Tejaswi, A., et al., Efficient use of cloud computing in medical science. American journal of computational mathematics, 2012. 2(3): p. 240-243.
  • 11. Akyalcin, S., et al., Diagnostic accuracy of impression-free digital models. American Journal of Orthodontics and Dentofacial Orthopedics, 2013. 144(6): p. 916-922.
  • 12. Fleming, P., V. Marinho, and A. Johal, Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthodontics & craniofacial research, 2011. 14(1): p. 1-16.
  • 13. Keim, R.G., et al., 2002 JCO study of orthodontic diagnosis and treatment procedures. Part 1. Results and trends. Journal of clinical orthodontics: JCO, 2002. 36(10): p. 553.
  • 14. Kim, J., G. Heo, and M.O. Lagravère, Accuracy of laserscanned models compared to plaster models and conebeam computed tomography. The Angle orthodontist, 2013. 84(3): p. 443-450.
  • 15. Wiranto, M.G., et al., Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. American Journal of Orthodontics and Dentofacial Orthopedics, 2013. 143(1): p. 140-147.
  • 16. Taneva, E.D., et al., 3D evaluation of palatal rugae for human identification using digital study models. Journal of forensic dental sciences, 2015. 7(3): p. 244.
  • 17. Patzelt, S.B., et al., Accuracy of full-arch scans using intraoral scanners. Clinical oral investigations, 2014. 18(6): p. 1687-1694.
  • 18. Kravitz, N.D., et al., Intraoral digital scanners. J Clin Orthod, 2014. 48(6): p. 337-347.
  • 19. Logozzo, S., et al., Recent advances in dental optics–Part I: 3D intraoral scanners for restorative dentistry. Optics and Lasers in Engineering, 2014. 54: p. 203-221.
  • 20. Flügge, T.V., et al., Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. American Journal of Orthodontics and Dentofacial Orthopedics, 2013. 144(3): p. 471-478.
  • 21. Cuperus, A.M.R., et al., Dental models made with an intraoral scanner: a validation study. American Journal of Orthodontics and Dentofacial Orthopedics, 2012. 142(3): p. 308-313.
  • 22. Patzelt, S.B., et al., The time efficiency of intraoral scanners: an in vitro comparative study. The Journal of the American Dental Association, 2014. 145(6): p. 542-551.
  • 23. Correia, G.D.C., F.A.L. Habib, and C.J. Vogel, Tooth-size discrepancy: A comparison between manual and digital methods. Dental press journal of orthodontics, 2014. 19(4): p. 107-113.
  • 24. Martin, C.B., et al., Orthodontic scanners: what’s available? Journal of orthodontics, 2015. 42(2): p. 136-143.
  • 25. Zhurov, A.I., et al., Averaging facial images. Threedimensional imaging for orthodontics and maxillofacial surgery. London: Wiley-Blackwell, 2010: p. 126-44.
  • 26. Wong, J.Y., et al., Validity and reliability of craniofacial anthropometric measurement of 3D digital photogrammetric images. The Cleft Palate-Craniofacial Journal, 2008. 45(3): p. 232-239.
  • 27. Bush, K. and O. Antonyshyn, Three-dimensional facial anthropometry using a laser surface scanner: validation of the technique. Plastic and reconstructive surgery, 1996. 98(2): p. 226-235.
  • 28. Jacobs, R.A. and P.S.E.F.D. Committee, Three-dimensional photography. Plastic and reconstructive surgery, 2001. 107(1): p. 276-277.
  • 29. Taneva, E., B. Kusnoto, and C.A. Evans, 3D scanning, imaging, and printing in orthodontics, in Issues in contemporary orthodontics. 2015, InTech.
  • 30. Rosati, R., et al., Digital dental cast placement in 3-dimensional, full-face reconstruction: a technical evaluation. American journal of orthodontics and dentofacial orthopedics, 2010. 138(1): p. 84-88.
  • 31. Sandbach, G., et al., Static and dynamic 3D facial expression recognition: A comprehensive survey. Image and Vision Computing, 2012. 30(10): p. 683-697.
  • 32. Hazeveld, A., J.J.H. Slater, and Y. Ren, Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. American Journal of Orthodontics and Dentofacial Orthopedics, 2014. 145(1): p. 108-115.
  • 33. Wiechmann, D., et al., Customized brackets and archwires for lingual orthodontic treatment. American journal of orthodontics and dentofacial orthopedics, 2003. 124(5): p. 593-599.
  • 34. Nasef, A.A., A.R. El-Beialy, and Y.A. Mostafa, Virtual techniques for designing and fabricating a retainer. American journal of orthodontics and dentofacial orthopedics, 2014. 146(3): p. 394-398.
  • 35. Groth, C., et al., Three-dimensional printing technology. J Clin Orthod, 2014. 48(8): p. 475-85.
  • 36. Farronato, G., et al., The digital-titanium Herbst. Journal of clinical orthodontics: JCO, 2011. 45(5): p. 263-7; quiz 287-8.
  • 37. Wiechmann, D., R. Schwestka-Polly, and A. Hohoff, Herbst appliance in lingual orthodontics. American Journal of Orthodontics and Dentofacial Orthopedics, 2008. 134(3): p. 439-446.
  • 38. Al Mortadi, N., et al., CAD/CAM/AM applications in the manufacture of dental appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 2012. 142(5): p. 727-733.
  • 39. Melkos, A.B., Advances in digital technology and orthodontics: a reference to the Invisalign method. Medical science monitor, 2005. 11(5): p. PI39-PI42.
  • 40. Fujita, K., Development of lingual-bracket technique. (Esthetic and hygienic approach to orthodontic treatment) (Part 2) Manufacture and treatment (author’s transl). Shika rikogaku zasshi. Journal of the Japan Society for Dental Apparatus and Materials, 1978. 19(46): p. 87-94.
  • 41. Fujita, K., New orthodontic treatment with lingual bracket mushroom arch wire appliance. American journal of orthodontics, 1979. 76(6): p. 657-675.
  • 42. Fujita, K., Multilingual-bracket and mushroom arch wire technique: a clinical report. American journal of orthodontics, 1982. 82(2): p. 120-140.
  • 43. Das, S.K., S. Labh, and A.K. Barik, Lingual orthodontic education: An insight. APOS Trends in Orthodontics, 2016. 6(4): p. 185.
  • 44. Karra, A. and M. Begum, Lasers in orthodontics. Int J Contemp Dent Med Rev, 2014. 2014.
  • 45. Genovese, M. and G. Olivi, Use of laser technology in orthodontics: hard and soft tissue laser treatments. European Journal of Paediatric Dentistry, 2010. 11(1): p. 44.
  • 46. Witt, E., A. Bartsch, and G. Sahm, The wear-timing measuring device in orthodontics--cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics. Fortschritte der Kieferorthopadie, 1991. 52(3): p. 117-125.
  • 47. Witt, E., et al., The determinants of wear behavior in treatment with removable orthodontic appliances. Fortschritte der Kieferorthopadie, 1992. 53(6): p. 322-329.
  • 48. Sahm, G., A. Bartsch, and E. Witt, Reliability of patient reports on compliance. The European Journal of Orthodontics, 1990. 12(4): p. 438-446.
  • 49. Pauls, A., et al., Effects of wear time recording on the patient’s compliance. Angle Orthodontist, 2013. 83(6): p. 1002-1008.
  • 50. Schott, T., et al., A microsensor for monitoring removableappliance wear. Journal of clinical orthodontics: JCO, 2011. 45(9): p. 518

Ortodontide Modern Tanı ve Tedavi Araçları

Yıl 2018, , 64 - 70, 01.06.2018
https://doi.org/10.21306/jids.2018.127

Öz

Teknoloji ve malzeme bilimindeki gelişmeler hasta kayıtlarının dijital yöntemlerle elde edilmesi ve saklanmasına, elde edilen verilerin daha ayrıntılı analiz edilmesine olanak sağlamıştır. Günümüzde 3 boyutlu görüntüleme ve üretim teknolojileri sayesinde şeffaf plaklarla, kişiye özel labial veya lingual tedavi sistemleriyle ortodontik tedavi ve ortognatik cerrahi uygulamaları yapılabilmektedir. Ayrıca yaşanan gelişmeler ortodontide lazer kullanımının ve hareketli apareylerde süre ölçümü yapılabilmesinin önünü açmıştır. Sunulan çalışmada, ortodontide kullanılabilen modern teşhis ve tedavi araçları incelenmiş ve konu derlenmiştir

Kaynakça

  • 1. Weinberger, B., The contribution of orthodontia to dentistry. Dent Cosmos, 1936. 78: p. 844-53.
  • 2. Jackson, V.H., Some methods in regulating. Dent Cosmos, 1886. 28: p. 372-5.
  • 3. Rogers, A.P., Evolution, development, and application of myofunctional therapy in orthodontics. American Journal of Orthodontics and Oral Surgery, 1939. 25(1): p. 1-19.
  • 4. Hitchcock, H.P., Pitfalls of the Crozat appliance. American journal of orthodontics, 1972. 62(5): p. 461-468.
  • 5. Thompson Jr, W., Dr. Robert HW Strang 1881–1982. The Angle Orthodontist, 1983. 53(1): p. 3-6.
  • 6. Salzmann, J.A., Principles of orthodontics. 1950: Lippincott.
  • 7. Shankland, W.M., The American Association of Orthodontists: the biography of a specialty organization. 1971: American Association of Orthodontists.
  • 8. Uppgaard, R., Bates v State Bar of Arizona, 433 US 350 (1977). Northwest dentistry, 2007. 86(4): p. 73-74.
  • 9. Van Noort, R., The future of dental devices is digital. Dental materials, 2012. 28(1): p. 3-12.
  • 10. Tejaswi, A., et al., Efficient use of cloud computing in medical science. American journal of computational mathematics, 2012. 2(3): p. 240-243.
  • 11. Akyalcin, S., et al., Diagnostic accuracy of impression-free digital models. American Journal of Orthodontics and Dentofacial Orthopedics, 2013. 144(6): p. 916-922.
  • 12. Fleming, P., V. Marinho, and A. Johal, Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthodontics & craniofacial research, 2011. 14(1): p. 1-16.
  • 13. Keim, R.G., et al., 2002 JCO study of orthodontic diagnosis and treatment procedures. Part 1. Results and trends. Journal of clinical orthodontics: JCO, 2002. 36(10): p. 553.
  • 14. Kim, J., G. Heo, and M.O. Lagravère, Accuracy of laserscanned models compared to plaster models and conebeam computed tomography. The Angle orthodontist, 2013. 84(3): p. 443-450.
  • 15. Wiranto, M.G., et al., Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. American Journal of Orthodontics and Dentofacial Orthopedics, 2013. 143(1): p. 140-147.
  • 16. Taneva, E.D., et al., 3D evaluation of palatal rugae for human identification using digital study models. Journal of forensic dental sciences, 2015. 7(3): p. 244.
  • 17. Patzelt, S.B., et al., Accuracy of full-arch scans using intraoral scanners. Clinical oral investigations, 2014. 18(6): p. 1687-1694.
  • 18. Kravitz, N.D., et al., Intraoral digital scanners. J Clin Orthod, 2014. 48(6): p. 337-347.
  • 19. Logozzo, S., et al., Recent advances in dental optics–Part I: 3D intraoral scanners for restorative dentistry. Optics and Lasers in Engineering, 2014. 54: p. 203-221.
  • 20. Flügge, T.V., et al., Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. American Journal of Orthodontics and Dentofacial Orthopedics, 2013. 144(3): p. 471-478.
  • 21. Cuperus, A.M.R., et al., Dental models made with an intraoral scanner: a validation study. American Journal of Orthodontics and Dentofacial Orthopedics, 2012. 142(3): p. 308-313.
  • 22. Patzelt, S.B., et al., The time efficiency of intraoral scanners: an in vitro comparative study. The Journal of the American Dental Association, 2014. 145(6): p. 542-551.
  • 23. Correia, G.D.C., F.A.L. Habib, and C.J. Vogel, Tooth-size discrepancy: A comparison between manual and digital methods. Dental press journal of orthodontics, 2014. 19(4): p. 107-113.
  • 24. Martin, C.B., et al., Orthodontic scanners: what’s available? Journal of orthodontics, 2015. 42(2): p. 136-143.
  • 25. Zhurov, A.I., et al., Averaging facial images. Threedimensional imaging for orthodontics and maxillofacial surgery. London: Wiley-Blackwell, 2010: p. 126-44.
  • 26. Wong, J.Y., et al., Validity and reliability of craniofacial anthropometric measurement of 3D digital photogrammetric images. The Cleft Palate-Craniofacial Journal, 2008. 45(3): p. 232-239.
  • 27. Bush, K. and O. Antonyshyn, Three-dimensional facial anthropometry using a laser surface scanner: validation of the technique. Plastic and reconstructive surgery, 1996. 98(2): p. 226-235.
  • 28. Jacobs, R.A. and P.S.E.F.D. Committee, Three-dimensional photography. Plastic and reconstructive surgery, 2001. 107(1): p. 276-277.
  • 29. Taneva, E., B. Kusnoto, and C.A. Evans, 3D scanning, imaging, and printing in orthodontics, in Issues in contemporary orthodontics. 2015, InTech.
  • 30. Rosati, R., et al., Digital dental cast placement in 3-dimensional, full-face reconstruction: a technical evaluation. American journal of orthodontics and dentofacial orthopedics, 2010. 138(1): p. 84-88.
  • 31. Sandbach, G., et al., Static and dynamic 3D facial expression recognition: A comprehensive survey. Image and Vision Computing, 2012. 30(10): p. 683-697.
  • 32. Hazeveld, A., J.J.H. Slater, and Y. Ren, Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. American Journal of Orthodontics and Dentofacial Orthopedics, 2014. 145(1): p. 108-115.
  • 33. Wiechmann, D., et al., Customized brackets and archwires for lingual orthodontic treatment. American journal of orthodontics and dentofacial orthopedics, 2003. 124(5): p. 593-599.
  • 34. Nasef, A.A., A.R. El-Beialy, and Y.A. Mostafa, Virtual techniques for designing and fabricating a retainer. American journal of orthodontics and dentofacial orthopedics, 2014. 146(3): p. 394-398.
  • 35. Groth, C., et al., Three-dimensional printing technology. J Clin Orthod, 2014. 48(8): p. 475-85.
  • 36. Farronato, G., et al., The digital-titanium Herbst. Journal of clinical orthodontics: JCO, 2011. 45(5): p. 263-7; quiz 287-8.
  • 37. Wiechmann, D., R. Schwestka-Polly, and A. Hohoff, Herbst appliance in lingual orthodontics. American Journal of Orthodontics and Dentofacial Orthopedics, 2008. 134(3): p. 439-446.
  • 38. Al Mortadi, N., et al., CAD/CAM/AM applications in the manufacture of dental appliances. American Journal of Orthodontics and Dentofacial Orthopedics, 2012. 142(5): p. 727-733.
  • 39. Melkos, A.B., Advances in digital technology and orthodontics: a reference to the Invisalign method. Medical science monitor, 2005. 11(5): p. PI39-PI42.
  • 40. Fujita, K., Development of lingual-bracket technique. (Esthetic and hygienic approach to orthodontic treatment) (Part 2) Manufacture and treatment (author’s transl). Shika rikogaku zasshi. Journal of the Japan Society for Dental Apparatus and Materials, 1978. 19(46): p. 87-94.
  • 41. Fujita, K., New orthodontic treatment with lingual bracket mushroom arch wire appliance. American journal of orthodontics, 1979. 76(6): p. 657-675.
  • 42. Fujita, K., Multilingual-bracket and mushroom arch wire technique: a clinical report. American journal of orthodontics, 1982. 82(2): p. 120-140.
  • 43. Das, S.K., S. Labh, and A.K. Barik, Lingual orthodontic education: An insight. APOS Trends in Orthodontics, 2016. 6(4): p. 185.
  • 44. Karra, A. and M. Begum, Lasers in orthodontics. Int J Contemp Dent Med Rev, 2014. 2014.
  • 45. Genovese, M. and G. Olivi, Use of laser technology in orthodontics: hard and soft tissue laser treatments. European Journal of Paediatric Dentistry, 2010. 11(1): p. 44.
  • 46. Witt, E., A. Bartsch, and G. Sahm, The wear-timing measuring device in orthodontics--cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics. Fortschritte der Kieferorthopadie, 1991. 52(3): p. 117-125.
  • 47. Witt, E., et al., The determinants of wear behavior in treatment with removable orthodontic appliances. Fortschritte der Kieferorthopadie, 1992. 53(6): p. 322-329.
  • 48. Sahm, G., A. Bartsch, and E. Witt, Reliability of patient reports on compliance. The European Journal of Orthodontics, 1990. 12(4): p. 438-446.
  • 49. Pauls, A., et al., Effects of wear time recording on the patient’s compliance. Angle Orthodontist, 2013. 83(6): p. 1002-1008.
  • 50. Schott, T., et al., A microsensor for monitoring removableappliance wear. Journal of clinical orthodontics: JCO, 2011. 45(9): p. 518
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Abdullah Bahadır Akça Bu kişi benim

Hüseyin Ozan Şahin Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Akça, A. B., & Şahin, H. O. (2018). Ortodontide Modern Tanı ve Tedavi Araçları. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi)(2), 64-70. https://doi.org/10.21306/jids.2018.127
AMA Akça AB, Şahin HO. Ortodontide Modern Tanı ve Tedavi Araçları. J Int Dent Sci. Haziran 2018;(2):64-70. doi:10.21306/jids.2018.127
Chicago Akça, Abdullah Bahadır, ve Hüseyin Ozan Şahin. “Ortodontide Modern Tanı Ve Tedavi Araçları”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi), sy. 2 (Haziran 2018): 64-70. https://doi.org/10.21306/jids.2018.127.
EndNote Akça AB, Şahin HO (01 Haziran 2018) Ortodontide Modern Tanı ve Tedavi Araçları. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 2 64–70.
IEEE A. B. Akça ve H. O. Şahin, “Ortodontide Modern Tanı ve Tedavi Araçları”, J Int Dent Sci, sy. 2, ss. 64–70, Haziran 2018, doi: 10.21306/jids.2018.127.
ISNAD Akça, Abdullah Bahadır - Şahin, Hüseyin Ozan. “Ortodontide Modern Tanı Ve Tedavi Araçları”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 2 (Haziran 2018), 64-70. https://doi.org/10.21306/jids.2018.127.
JAMA Akça AB, Şahin HO. Ortodontide Modern Tanı ve Tedavi Araçları. J Int Dent Sci. 2018;:64–70.
MLA Akça, Abdullah Bahadır ve Hüseyin Ozan Şahin. “Ortodontide Modern Tanı Ve Tedavi Araçları”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi), sy. 2, 2018, ss. 64-70, doi:10.21306/jids.2018.127.
Vancouver Akça AB, Şahin HO. Ortodontide Modern Tanı ve Tedavi Araçları. J Int Dent Sci. 2018(2):64-70.

Dergimize sadece Araştırma makalesi, vaka raporu ve Derleme türündeki yayınlarınızı dergimize gönderebilirsiniz. Dergimiz, Uluslararası ve ulusal indekslerce taranmaktadır.

Uluslararası Diş Hekimliği Bilimleri Dergisi Europub, Asian Science Citation Index, Asos index, ACAR index ve Google Scholar tarafından dizinlenmektedir. Ayrıca, TR Dizin ve diğer indekslere başvuru yapılmıştır.