BibTex RIS Kaynak Göster

Kesirsel Süpersimetrik iso 1,1

Yıl 2018, Cilt: 19 Sayı: 1, 19 - 22, 01.01.2018

Öz

Bu çalışmada, S3permütasyon grupları üzerine kurulmuş kesirsel süpersimetrik iso 1,1 cebri, Hopf cebri formülasyonunda elde edilmiştir. Bu cebir U 2 3 iso 1.1 ile gösterilmiştir.

Kaynakça

  • Ahmedov H and Dayi Ö. F. (1999)..,Two dimensional fractional supersymmetry from the quantum Poincare group at roots of unity, J.Phys.A, V.32, 6247-625.
  • Ahmedov H and Dayi Ö. F. (2000).,Non-abeian fractional supersymmetry in two dimensions,Mod.Phys.Lett.A, V.15, No.29 ,1801-18111.
  • Ahmedov, H. and Dayi, Ö. F. (1999). 𝑆𝐿𝑞(2, ℝ) at roots of unity. J. Phys. A: Math. Gen. 32 1895-1907.
  • Ahmedov, H., Yildiz, A. and Ucan, Y. (2001). Fractional Super Lie Algebras and Groups, J. Phys. A: Math. Gen. 34 6413-6423.
  • Ahn C, Bernard D. and Leclair A. (1990). Fractional supersymmetries in perturbed coset CFT.s and intrgrable soliton theory, Nucl.Phys.B, 409.
  • De Witt B. (1992) Supermanifolds(Cambridge Monographs on Mathematical Physics), 428. Cambridge University Press; 2th Edition, Cambridge.
  • Goze M., Raush deTraunbenberg M. and Tanasa A. J. (2007), Poincaré and sl(2) algebras of order 3, Math. Phys., 48, 093507.
  • Kerner R. (1992), 𝑍3 -graded algebras and the cubic root of the supersymmetry translations, J. Math. Phys. 33,403.
  • Kostant B. (1997). Graded manifolds, graded Lie theory and prequantization Lecture Notes in Mathematics,177. Springer, Berlin.
  • Raush de Traunbenberg M. (2004) Four Dimensional Cubic Supersymmetry, Proceedings of institute of Mathematics of NAS of Ukraine, 50 part 2, 578-585.
  • Rausch de Traubenberg M. and Slupinski M. J.(1997) Fractional supersymmetry and groups,Mod. Phys. Lett.A, 39, 3051.
  • Rausch de Traubenberg M. and Slupinski M. J.(2000), Fractional supersymmetry and Fth-roots of representations,J. Math. Phys., 41, 4556.
  • Vilenkin N. Ya. and Klimyk A. U. (1991). Representations of Lie Groups and Special Functions, Kluwer, Academic, Dordrecht.
  • Wang X., Han D., Yu C. And Zheng Z. (2012). The geometric structure of unit dual quaternion with application in kinematic control. J. Math. Anal. Appl. 389 1352– 1364.

Fractional Supersymmetric iso 1,1

Yıl 2018, Cilt: 19 Sayı: 1, 19 - 22, 01.01.2018

Öz

In this study, fractional supersymmetric iso 1,1 based on the permutation groups S3, formulated in the Hopf algebra is obtained. This algebra is denoted by U 32 iso 1,1 .

Kaynakça

  • Ahmedov H and Dayi Ö. F. (1999)..,Two dimensional fractional supersymmetry from the quantum Poincare group at roots of unity, J.Phys.A, V.32, 6247-625.
  • Ahmedov H and Dayi Ö. F. (2000).,Non-abeian fractional supersymmetry in two dimensions,Mod.Phys.Lett.A, V.15, No.29 ,1801-18111.
  • Ahmedov, H. and Dayi, Ö. F. (1999). 𝑆𝐿𝑞(2, ℝ) at roots of unity. J. Phys. A: Math. Gen. 32 1895-1907.
  • Ahmedov, H., Yildiz, A. and Ucan, Y. (2001). Fractional Super Lie Algebras and Groups, J. Phys. A: Math. Gen. 34 6413-6423.
  • Ahn C, Bernard D. and Leclair A. (1990). Fractional supersymmetries in perturbed coset CFT.s and intrgrable soliton theory, Nucl.Phys.B, 409.
  • De Witt B. (1992) Supermanifolds(Cambridge Monographs on Mathematical Physics), 428. Cambridge University Press; 2th Edition, Cambridge.
  • Goze M., Raush deTraunbenberg M. and Tanasa A. J. (2007), Poincaré and sl(2) algebras of order 3, Math. Phys., 48, 093507.
  • Kerner R. (1992), 𝑍3 -graded algebras and the cubic root of the supersymmetry translations, J. Math. Phys. 33,403.
  • Kostant B. (1997). Graded manifolds, graded Lie theory and prequantization Lecture Notes in Mathematics,177. Springer, Berlin.
  • Raush de Traunbenberg M. (2004) Four Dimensional Cubic Supersymmetry, Proceedings of institute of Mathematics of NAS of Ukraine, 50 part 2, 578-585.
  • Rausch de Traubenberg M. and Slupinski M. J.(1997) Fractional supersymmetry and groups,Mod. Phys. Lett.A, 39, 3051.
  • Rausch de Traubenberg M. and Slupinski M. J.(2000), Fractional supersymmetry and Fth-roots of representations,J. Math. Phys., 41, 4556.
  • Vilenkin N. Ya. and Klimyk A. U. (1991). Representations of Lie Groups and Special Functions, Kluwer, Academic, Dordrecht.
  • Wang X., Han D., Yu C. And Zheng Z. (2012). The geometric structure of unit dual quaternion with application in kinematic control. J. Math. Anal. Appl. 389 1352– 1364.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Yasemen Uçan Bu kişi benim

Reşat Köşker Bu kişi benim

Özge Hıdırlar Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 1

Kaynak Göster

APA Uçan, Y., Köşker, R., & Hıdırlar, Ö. (2018). Fractional Supersymmetric iso 1,1. Doğuş Üniversitesi Dergisi, 19(1), 19-22.