BibTex RIS Kaynak Göster

Tarımsal Ar-Ge Harcamalarının Tarımsal Toplam Faktör Verimliliği Üzerindeki Etkileri: Seçilmiş Latin Amerika Ülkeleri Örneği

Yıl 2018, Cilt: 19 Sayı: 2, 17 - 26, 01.07.2018

Öz

Bu çalışmanın amacı, 1981-2013 döneminde seçilmiş 5 Latin Amerika ülkesini kapsayan tarımsal AR-GE harcamalarının tarımsal toplam faktör verimliliği üzerindeki etkilerini araştırmaktır. Çalışmada yatay kesit bağımlılığı altında panel eşbütünleşme analizi ve tamamen değiştirilmiş en küçük kareler FMOLS yöntemi kullanılmıştır. Çalışmanın sonucunda tarımsal AR-GE harcamaları ile tarımsal toplam faktör verimliliği arasında eşbütünleşme ilişkisi tespit edilmiş olup tarımsal AR-GE harcamalarının esneklik katsayısı 0,58 olarak bulunmuştur

Kaynakça

  • Agricultural Science and Technology Indicators (ASTI, 2018). Retrieved from www.asti.cgiar.org.
  • Alene, A.D. (2010). “Productivity growth and the effects of R&D in African agriculture”, Agricultural Economics, 41, 223–238.
  • Alston, J.M., Chan-Kang, C., Marra, M.C., Pardey, P.G. and Wyatt, T.J. (2000). A Meta-Analysis of Rates of Return to Agricultural R&D: Ex Pede Herculem? Washington D.C.: IFPRI Research Report No 113.
  • Breusch, T., and A. Pagan (1980). “The lagrange multiplier test and its application to model specification in econometrics”, Review of Economic Studies, 47, 239– 253.
  • Chen, P. C., Yu, M. M., Chang, C. C., and Hsu, S. H. (2008). “Total factor productivity growth in China's agricultural sector”, China Economic Review, 19(4), 580-593. doi:https://doi.org/10.1016/j.chieco.2008.07.001
  • Cox, T., Mullen, J. and Hu, W.S. (1997). “Nonparametric measures of the impact of public research expenditures on Australian broadacre agriculture”, Australian Journal of Agricultural and Resource Economics, 41, 333–360.
  • Evenson, R. E., Pray, C. E., and Rosegrant, M. W. (1999). Agricultural research and productivity growth in India, Research Report, 109. Washington: IFPRI.
  • FAO. (2017). The future of food and agriculture – Trends and challenges. Rome.
  • Fuglie, K.O., MacDonald, J.M., and Ball, E. (2007). Productivity growth in U.S. agriculture, United States Department of Agriculture – Economic Research Service (USDA – ERS), Economic Brief Number 9.
  • Khundrakpam, J.K. and Ranjan, R. (2010). “Saving-investment nexus and international capital mobility in India: Revisiting Feldstein-Harioka hypothesis”, Indian Economic Review, New Series, Vol. 45, No. 1, 49-66.
  • Ludena, C. (2010). “Agricultural productivity growth, efficiency change and technical progress in Latin America and the Caribbean”. Inter-American Development Bank, Working Paper Series No. 186, Washington DC..
  • Lusigi, A. and Thirtle, C. (1997). “Total factor productivity and the effects of R&D in African Agriculture”, Journal of International Development, Vol. 9, No. 4, 529-538.
  • McAtee, W. (1936). “The Malthusian Principle in Nature”. The Scientific Monthly, 42(5), 444-456. Retrieved from http://www.jstor.org/stable/15956.
  • Mullen, J.D. and Cox, T.L. (1995). “The returns from research in Australian broadacre agriculture”, Australian Journal of Agricultural Economics, 39, 105–128.
  • Nin-Pratt, A., Falconi, C., Ludena, C.E., and Martel, P. (2015). “Productivity and the performance of agriculture in Latin America and the Caribbean: from the lost decade to the commodity boom”. Inter-American Development Bank, Working Paper No. 608 (IDB-WP-608), Washington DC..
  • OECD (2015). Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264239012-en
  • Pedroni, P. (2000). “Fully-modified OLS for heterogeneous cointegrated panels”, Advances in Econometrics, 15, 93-130.
  • Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ., 22: 265–312. doi: 10.1002/jae.951
  • Phillips, P., and Hansen, B. (1990). “Statistical inference in instrumental variables regression with I (1) processes”, Review of Economic Studies, Vol. 57, Issue: 1, 99–125.
  • Salim, R. A., and Islam, N. (2010). “Exploring the impact of R&D and climate change on agricultural productivity growth: the case of Western Australia”, The Australian Journal of Agricultural and Resource Economics, 54, 561–582.
  • Singh, R.B., Kumar, P., and Woodhead, T. (2002). Smallholder farmers in India: food security and agricultural policy, FAO Regional Office for Asia and the Pacific, RAP publication: 2002/03.
  • Suphannachart, W. and Warr, P. (2011). “Research and productivity in Thai agriculture”, Australian Journal of Agricultural and Resource Economics, 55: 35–52. doi: 10.1111/j.1467-8489.2010.00519.x.
  • The World Bank (2018), Population indicators. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL
  • United States Department of Agriculture – Economic Research Service (USDA – ERS, 2018), International Agricultural Productivity (Data set). Retrieved from www.ers.usda.gov.
  • USDA (2012). Total factor productivity has become the primary source of growth in world agriculture. Retrieved from https://www.ers.usda.gov/data- products/chart-gallery/gallery/chart-detail/?chartId=76219
  • Westerlund, J. (2008). Panel cointegration tests of the Fisher effect, Journal of Applied Econometrics, 23: 193 233.
  • Zereyesus, Y.A., Dalton, T.J. (2017) “Rates of return to sorghum and millet research investments: A meta-analysis”. PLoS ONE 12(7): e0180414. https://doi.org/10.1371/journal.pone.0180414

The Impacts of Agricultural Research and Development Expenditures on Agricultural Total Factor Productivity: Evidence from Selected Latin American Countries

Yıl 2018, Cilt: 19 Sayı: 2, 17 - 26, 01.07.2018

Öz

The aim of the study is to investigate the impacts of agricultural research and development expenditures on agricultural total factor productivity by using annual panel data set covering 5 selected Latin American countries from 1981 to 2013. In doing so, we use the panel cointegration analysis under cross-section dependence and panel fully modified ordinary least squares FMOLS method. At the end of the analysis; there is a cointegration relationship between research and development and total factor productivity in agriculture sector for these selected countries. Also, the elasticity coefficient of agricultural research and development expenditures is 0.58.

Kaynakça

  • Agricultural Science and Technology Indicators (ASTI, 2018). Retrieved from www.asti.cgiar.org.
  • Alene, A.D. (2010). “Productivity growth and the effects of R&D in African agriculture”, Agricultural Economics, 41, 223–238.
  • Alston, J.M., Chan-Kang, C., Marra, M.C., Pardey, P.G. and Wyatt, T.J. (2000). A Meta-Analysis of Rates of Return to Agricultural R&D: Ex Pede Herculem? Washington D.C.: IFPRI Research Report No 113.
  • Breusch, T., and A. Pagan (1980). “The lagrange multiplier test and its application to model specification in econometrics”, Review of Economic Studies, 47, 239– 253.
  • Chen, P. C., Yu, M. M., Chang, C. C., and Hsu, S. H. (2008). “Total factor productivity growth in China's agricultural sector”, China Economic Review, 19(4), 580-593. doi:https://doi.org/10.1016/j.chieco.2008.07.001
  • Cox, T., Mullen, J. and Hu, W.S. (1997). “Nonparametric measures of the impact of public research expenditures on Australian broadacre agriculture”, Australian Journal of Agricultural and Resource Economics, 41, 333–360.
  • Evenson, R. E., Pray, C. E., and Rosegrant, M. W. (1999). Agricultural research and productivity growth in India, Research Report, 109. Washington: IFPRI.
  • FAO. (2017). The future of food and agriculture – Trends and challenges. Rome.
  • Fuglie, K.O., MacDonald, J.M., and Ball, E. (2007). Productivity growth in U.S. agriculture, United States Department of Agriculture – Economic Research Service (USDA – ERS), Economic Brief Number 9.
  • Khundrakpam, J.K. and Ranjan, R. (2010). “Saving-investment nexus and international capital mobility in India: Revisiting Feldstein-Harioka hypothesis”, Indian Economic Review, New Series, Vol. 45, No. 1, 49-66.
  • Ludena, C. (2010). “Agricultural productivity growth, efficiency change and technical progress in Latin America and the Caribbean”. Inter-American Development Bank, Working Paper Series No. 186, Washington DC..
  • Lusigi, A. and Thirtle, C. (1997). “Total factor productivity and the effects of R&D in African Agriculture”, Journal of International Development, Vol. 9, No. 4, 529-538.
  • McAtee, W. (1936). “The Malthusian Principle in Nature”. The Scientific Monthly, 42(5), 444-456. Retrieved from http://www.jstor.org/stable/15956.
  • Mullen, J.D. and Cox, T.L. (1995). “The returns from research in Australian broadacre agriculture”, Australian Journal of Agricultural Economics, 39, 105–128.
  • Nin-Pratt, A., Falconi, C., Ludena, C.E., and Martel, P. (2015). “Productivity and the performance of agriculture in Latin America and the Caribbean: from the lost decade to the commodity boom”. Inter-American Development Bank, Working Paper No. 608 (IDB-WP-608), Washington DC..
  • OECD (2015). Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264239012-en
  • Pedroni, P. (2000). “Fully-modified OLS for heterogeneous cointegrated panels”, Advances in Econometrics, 15, 93-130.
  • Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ., 22: 265–312. doi: 10.1002/jae.951
  • Phillips, P., and Hansen, B. (1990). “Statistical inference in instrumental variables regression with I (1) processes”, Review of Economic Studies, Vol. 57, Issue: 1, 99–125.
  • Salim, R. A., and Islam, N. (2010). “Exploring the impact of R&D and climate change on agricultural productivity growth: the case of Western Australia”, The Australian Journal of Agricultural and Resource Economics, 54, 561–582.
  • Singh, R.B., Kumar, P., and Woodhead, T. (2002). Smallholder farmers in India: food security and agricultural policy, FAO Regional Office for Asia and the Pacific, RAP publication: 2002/03.
  • Suphannachart, W. and Warr, P. (2011). “Research and productivity in Thai agriculture”, Australian Journal of Agricultural and Resource Economics, 55: 35–52. doi: 10.1111/j.1467-8489.2010.00519.x.
  • The World Bank (2018), Population indicators. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL
  • United States Department of Agriculture – Economic Research Service (USDA – ERS, 2018), International Agricultural Productivity (Data set). Retrieved from www.ers.usda.gov.
  • USDA (2012). Total factor productivity has become the primary source of growth in world agriculture. Retrieved from https://www.ers.usda.gov/data- products/chart-gallery/gallery/chart-detail/?chartId=76219
  • Westerlund, J. (2008). Panel cointegration tests of the Fisher effect, Journal of Applied Econometrics, 23: 193 233.
  • Zereyesus, Y.A., Dalton, T.J. (2017) “Rates of return to sorghum and millet research investments: A meta-analysis”. PLoS ONE 12(7): e0180414. https://doi.org/10.1371/journal.pone.0180414
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Sefa Işık Bu kişi benim

Yayımlanma Tarihi 1 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 2

Kaynak Göster

APA Işık, S. (2018). The Impacts of Agricultural Research and Development Expenditures on Agricultural Total Factor Productivity: Evidence from Selected Latin American Countries. Doğuş Üniversitesi Dergisi, 19(2), 17-26.