COVID-19 SALGINI SÜRECİNDE TÜKETİCİLERİN YENİ TEKNOLOJİLERİ BENİMSEMELERİNİN TEKNOLOJİ KABUL MODELİ (TKM) ÇERÇEVESİNDE TEMASSIZ TESLİMAT ÖZELİNDE İNCELENMESİ: MOBİL UYGULAMALAR ÜZERİNE BİR ARAŞTIRMA
Yıl 2022,
Cilt: 23 Sayı: COVID-19 ÖZEL SAYISI, 17 - 34, 28.03.2022
Yavuz Toraman
,
Cenk Yüksel
Öz
Araştırmanın temel problemi COVID-19 sürecinde yeni teknolojilerin tüketiciler tarafından kullanımının kabulünü veya reddini etkileyen faktörlerin incelenmesidir. Bu bağlamda tüketicilerin yeni teknolojileri kabul ve benimseme süreçleri, aktif kullanımı ve kullanma niyetleri araştırma modeline TKM literatürüne uygun bir şekilde dahil edilen değişkenler ile anlaşılması amaçlanmıştır. Araştırma verileri çevrimiçi anket metoduyla 506 kişilik kullanılabilir örneklem elde edilmiştir. Araştırmada yapısal eşitlik modellemesi kullanılmış olup, öncelikle verilerin geçerlilik güvenilirlik analizleri yapılmıştır. Değişkenlere ait güvenilirlik ve geçerlilik analizlerinin ardından model Smart PLS ile yol analizleri yapılmıştır. Araştırma modelinde; aktif kullanım, kullanma niyeti, algılanan fayda, algılanan kullanım kolaylığı, algılanan uyumluluk ve algılanan güvenlik (teslimat) değişkenleri yer almaktadır. Araştırma analiz sonuçları, aktif kullanımı etkileyen en önemli faktör kullanma niyetidir. Kullanma niyetini etkileyen en önemli etken algılanan faydadır. Araştırmadaki bağımsız değişkenler ve algılanan kullanım kolaylığı algılanan faydayı önemli ölçüde ve anlamlı bir şekilde etkileyerek, modeldeki hipotezlerin çoğunluğu kabul edilmiştir. Araştırmada COVID-19’un da etkisini görmek açısından algılanan (teslimat) güvenlik değişkeni ilişkide olduğu başta mobil uygulamaları kullanma niyeti olmak tüm değişkenleri pozitif olarak etkilemiştir. Ek olarak mobil uygulamaların aktif kullanımına dolaylı olarak daha yüksek bir etki düzeyine sahiptir.
Teşekkür
Değerli vaktinizi ayırdığınız için teşekkürlerimi sunarım.
Kaynakça
- Agatz, N. A., Fleischmann, M., & Van Nunen, J. A. (2008). E-fulfillment and multi-channel distribution–a review. European Journal Of Operational Research, 187(2), 339-356.
- Ajzen, I. (1991). The theory of planned behavior. organızational behavior and human decısıon processes. 50(2), 179–211.
- Barnes, S. J. (2002). The mobile commerce value chain: analysis and future developments. International journal of information management, 22(2), 91-108.
- Chen, Y. H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial management & data systems. 107(1), 21–36.
- Davis, Fred D. (1989). "Perceived usefulness, perceived ease of use, and user acceptance of information technology", MIS quarterly,13(3), s.319-340. (1989).
- D. Grewal ve M.Levy,(2007). Retailing research: past, present, and future. Journal of Retailing, 83(4), 447-464 December 2007.
- Elena, KarahannaDetmar W. StraubNorman L. Chervany (1999). Informatıont echnologya doptıon across tıme: a cross-sectıonal comparıson of pre-adoptıon and post-adoptıon belıefs, source: Mıs Quarterly, Vol. 23, No. 2 (Jun., 1999), Pp. 183-213.
- Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
- Hair, J. F., Hult, G. T., Ringle, C. M. and Sarstedt, M. (2017). A primer on partial least squares structural equation modelling (Pls-Sem). Los Angeles: Sage publication. second edition.
- H.Ferhat Ecer ve M. Canıtez (2004). Pazarlama ilkeleri, Gazi kitabevi, (2004).
- Kotler, P. (2011). Reinventing marketing to manage the environmental ımperative. Journal Of Marketing, 75(4), 132–135.
- Kurtuluş, K. (2010). Araştırma yöntemleri. Türkmen Kitabevi.
- Mols, N. P. (2000). "The İnternet And Services Marketing – The Case Of Danish Retail Banking", Internet Research, Vol. 10 No. 1, pp. 7-18.
- Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
- Ngai, E. W., & Gunasekaran, A. (2007). A review for mobile commerce research and applications. Decision support systems, 43(1), 3-15.
- Nisar, T. M., ve Prabhakar, G. (2017). "What factors determine e-satisfaction and consumer spending ın e-commerce retailing?" Journal of Retailing and Consumer Services, 39/5, 135–144.
- Özdamar, K. (2004). Paket programlar ile istatistiksel veri analizi. Kaan Kitabevi.
- Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic commerce research and applications, 9(3), 209-216.
- Pavlou, P. (2001). Integrating trust in electronic commerce with the technology acceptance model: model development and validation. Amcis 2001 proceedings, 159.
- Pavlou, P (2003). Consumer Acceptance Of Electronic Commerce:Integrating Trust And Risk With The Technology Acceptance Model, International Journal Of Electronic Commerce, 7:3, 101-134.
- Plouffe, C. R., Hulland, J. S., ve Vandenbosch, M. (2001). Research Report Richness Versus Parsimony İn Modeling Technology Adoption Decisions—Understanding Merchant Adoption Of A Sma. Systems Research 12(2):208-222.
- Rosenbloom, B. (2007). The Wholesaler’s Role İn The Marketing Channel: Disintermediation Vs. Reintermediation. The International Review of Retail, Distribution and Consumer Research, 17(4), 327–339.
- Siau, K., Lim, E.-P., & Shen, Z. (2001). Mobile commerce. Journal of Database Management, 12(3), 4–13.
- Şekerkaya A. K., Yüksel C. A. (2002). Tüketicilerin İnternete Karşı Tutumlarına Göre Kümeler Halinde İncelenmesi ı. ü. İsletme Fakültesi Dergisi, cilt.31, sa.2, ss.7-29.
- Taylor, S., ve Todd, P. (1995a). Assessing It Usage The Role Of Prior Experience, Mıs Quarterly, 19(4), 561-570.
- Toraman, Y. (2021). COVID-19 Sürecinde Tam Kapanma Kararının Tüketici Davranışlarına Etkisi: E- Ticaret Özelinde İncelenmesi, Kırklareli Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 2(1), 81-95.
- TÜBA, (2020). “Küresel Salgın Değerlendirme Raporu Türkiye Bilimler Akademisi” TÜBA.
- Vaja, M. B. R. (2015). Retail management. International Journal of Research and Analytics Reviews, 2(1), 22-28.
- Varshney, U., Vetter, R. J., & Kalakota, R. (2000). Mobile commerce: a new frontier. computer, 33(10), 32–38.
- Venkatesh, Viswanath,Fred D. Davis (1996). “A Model Of The Antecedents Of Perceived Ease Of Use: Development And Test”, Decision Sciences, 27(3), 1996,S.451-481.
- Venkatesh, Viswanath, Fred D. Davis (2000). "A Theoretical Extension Of The Technology Acceptancemodel: Four Longitudinal Field Studies", Management Science, 46(2), 2000, S.186-204.
- Wu, J. ve Wang, S. (2004). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729.
- Yorulmaz, M., ve Alnıpak, S. (2020). Yönetici Düzeyindeki Gemi Adamlarının Elektronik Seyir Teknolojileri Kullanımının Teknoloji Kabul Modeli İle İncelenmesi. Opus Uluslararası Toplum Araştırmaları Dergisi, 16(29), 1928–1954.
- Zentes, J., Morschett, D., & Schramm-Klein, H. (2017). Cross-channel Retailing. In Strategic Retail Management ,95-114. Springer Gabler, Wiesbaden.
INVESTIGATION OF CONSUMERS' APPROACH OF NEW TECHNOLOGIES IN THE EVENT OF THE COVID-19 EPIDEMIC WITHIN THE FRAMEWORK OF THE TECHNOLOGY ACCEPTANCE MODEL (TAM) SPECIFIC TO CONTACTLESS DELİVERY
Yıl 2022,
Cilt: 23 Sayı: COVID-19 ÖZEL SAYISI, 17 - 34, 28.03.2022
Yavuz Toraman
,
Cenk Yüksel
Öz
Main problem of the research is to determine the acceptance and denial factors of new technology. In this context consumer’s acceptance of new technology on basis of actual usage and intention of usage using a research model with accordance with TKM literature. Using online questionnaire method, 503 samples were acquired. Structural equtional model was used and data was analysed using reliability analysis and then roadmap was created for the model with Smart PLS. In the final research model, actual usage, behavioral intention, perceived usefulness, attitude, perceived ease of use, perceived trust, perceived compatibility and perceived security (delivery) variables are present. Research analysis results, the most impactful factor is behavioral intention. The variable affecting actual usage was the intent of usage. In turn the variable mostly affecting the intent of usage was the perceived usefulness. The independent variables present in the paper and the perceived ease of use affected the perceived usefulness in a meaningful way, proving the hypothesis of this paper. To assess the effect of Covid-19 all other variables that are linked with the perceived security (delivery) variable have been deemed as positive. Additionally because of the active use of the mobile apps the impact is greater.
Kaynakça
- Agatz, N. A., Fleischmann, M., & Van Nunen, J. A. (2008). E-fulfillment and multi-channel distribution–a review. European Journal Of Operational Research, 187(2), 339-356.
- Ajzen, I. (1991). The theory of planned behavior. organızational behavior and human decısıon processes. 50(2), 179–211.
- Barnes, S. J. (2002). The mobile commerce value chain: analysis and future developments. International journal of information management, 22(2), 91-108.
- Chen, Y. H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial management & data systems. 107(1), 21–36.
- Davis, Fred D. (1989). "Perceived usefulness, perceived ease of use, and user acceptance of information technology", MIS quarterly,13(3), s.319-340. (1989).
- D. Grewal ve M.Levy,(2007). Retailing research: past, present, and future. Journal of Retailing, 83(4), 447-464 December 2007.
- Elena, KarahannaDetmar W. StraubNorman L. Chervany (1999). Informatıont echnologya doptıon across tıme: a cross-sectıonal comparıson of pre-adoptıon and post-adoptıon belıefs, source: Mıs Quarterly, Vol. 23, No. 2 (Jun., 1999), Pp. 183-213.
- Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
- Hair, J. F., Hult, G. T., Ringle, C. M. and Sarstedt, M. (2017). A primer on partial least squares structural equation modelling (Pls-Sem). Los Angeles: Sage publication. second edition.
- H.Ferhat Ecer ve M. Canıtez (2004). Pazarlama ilkeleri, Gazi kitabevi, (2004).
- Kotler, P. (2011). Reinventing marketing to manage the environmental ımperative. Journal Of Marketing, 75(4), 132–135.
- Kurtuluş, K. (2010). Araştırma yöntemleri. Türkmen Kitabevi.
- Mols, N. P. (2000). "The İnternet And Services Marketing – The Case Of Danish Retail Banking", Internet Research, Vol. 10 No. 1, pp. 7-18.
- Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
- Ngai, E. W., & Gunasekaran, A. (2007). A review for mobile commerce research and applications. Decision support systems, 43(1), 3-15.
- Nisar, T. M., ve Prabhakar, G. (2017). "What factors determine e-satisfaction and consumer spending ın e-commerce retailing?" Journal of Retailing and Consumer Services, 39/5, 135–144.
- Özdamar, K. (2004). Paket programlar ile istatistiksel veri analizi. Kaan Kitabevi.
- Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic commerce research and applications, 9(3), 209-216.
- Pavlou, P. (2001). Integrating trust in electronic commerce with the technology acceptance model: model development and validation. Amcis 2001 proceedings, 159.
- Pavlou, P (2003). Consumer Acceptance Of Electronic Commerce:Integrating Trust And Risk With The Technology Acceptance Model, International Journal Of Electronic Commerce, 7:3, 101-134.
- Plouffe, C. R., Hulland, J. S., ve Vandenbosch, M. (2001). Research Report Richness Versus Parsimony İn Modeling Technology Adoption Decisions—Understanding Merchant Adoption Of A Sma. Systems Research 12(2):208-222.
- Rosenbloom, B. (2007). The Wholesaler’s Role İn The Marketing Channel: Disintermediation Vs. Reintermediation. The International Review of Retail, Distribution and Consumer Research, 17(4), 327–339.
- Siau, K., Lim, E.-P., & Shen, Z. (2001). Mobile commerce. Journal of Database Management, 12(3), 4–13.
- Şekerkaya A. K., Yüksel C. A. (2002). Tüketicilerin İnternete Karşı Tutumlarına Göre Kümeler Halinde İncelenmesi ı. ü. İsletme Fakültesi Dergisi, cilt.31, sa.2, ss.7-29.
- Taylor, S., ve Todd, P. (1995a). Assessing It Usage The Role Of Prior Experience, Mıs Quarterly, 19(4), 561-570.
- Toraman, Y. (2021). COVID-19 Sürecinde Tam Kapanma Kararının Tüketici Davranışlarına Etkisi: E- Ticaret Özelinde İncelenmesi, Kırklareli Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 2(1), 81-95.
- TÜBA, (2020). “Küresel Salgın Değerlendirme Raporu Türkiye Bilimler Akademisi” TÜBA.
- Vaja, M. B. R. (2015). Retail management. International Journal of Research and Analytics Reviews, 2(1), 22-28.
- Varshney, U., Vetter, R. J., & Kalakota, R. (2000). Mobile commerce: a new frontier. computer, 33(10), 32–38.
- Venkatesh, Viswanath,Fred D. Davis (1996). “A Model Of The Antecedents Of Perceived Ease Of Use: Development And Test”, Decision Sciences, 27(3), 1996,S.451-481.
- Venkatesh, Viswanath, Fred D. Davis (2000). "A Theoretical Extension Of The Technology Acceptancemodel: Four Longitudinal Field Studies", Management Science, 46(2), 2000, S.186-204.
- Wu, J. ve Wang, S. (2004). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729.
- Yorulmaz, M., ve Alnıpak, S. (2020). Yönetici Düzeyindeki Gemi Adamlarının Elektronik Seyir Teknolojileri Kullanımının Teknoloji Kabul Modeli İle İncelenmesi. Opus Uluslararası Toplum Araştırmaları Dergisi, 16(29), 1928–1954.
- Zentes, J., Morschett, D., & Schramm-Klein, H. (2017). Cross-channel Retailing. In Strategic Retail Management ,95-114. Springer Gabler, Wiesbaden.