İnceleme Makalesi
BibTex RIS Kaynak Göster

DOKUNSAL YUMUŞAKLIK ALGISINA İLİŞKİN BİR İNCELEME

Yıl 2023, , 1503 - 1523, 25.12.2023
https://doi.org/10.33171/dtcfjournal.2023.63.2.24

Öz

Günlük hayatta sıklıkla yumuşak olarak adlandırdığımız nesnelerle etkileşimde bulunuruz. Dokunsal (haptik) duyum sayesinde bu nesneleri aktif olarak keşfederken onların şekillerine, işlevlerine ve malzeme özelliklerine dair bilgileri kolayca ediniriz. Günlük hayatta etkileşimde bulunduğumuz nesnelerin yumuşaklığı en önemli malzeme özelliklerinden biridir. Dokunsal yumuşaklık algısını yediğimiz meyvenin tazeliğinden giydiğimiz kıyafetin uygunluğuna kadar çok çeşitli durumlarda kullanırız. Birçok nesneyi yumuşak olarak nitelesek de bu nesneler birinden oldukça farklıdır; bir kumaşın, el kreminin, kumun ya da kedi tüyünün yumuşaklığı doğaları gereği birbirlerinden oldukça farklıdır. Dokunsal yumuşaklık algısı alanyazında özellikle de mühendislik alanındaki çalışmalarda genellikle bir nesnenin ne kadar şekil değiştirebildiği ile tanımlanmış ve fiziksel olarak nesnenin dış kuvvetlerin etkisi ile ne kadar şekil değiştirebildiği ile ölçülmüştür. Dahası dokunsal yumuşaklığı araştıran bazı çalışmalarda yumuşaklığı yargılamada en uygun (optimal) el hareketinin “bastırmak/basınç uygulamak” olduğunu belirtmiştir. Fakat son yıllardaki çalışmalar insanlardaki yumuşaklık algısını tek boyutla açıklamanın mümkün olmadığını göstermiştir. Yakın zamanda yapılan çalışmalarda yumuşaklığın algısal boyutlarının birden fazla olduğununun yanı sıra yüzey yumuşaklığı, akışkanlık (viskozite), taneciklilik (granüllü yapı) ve şekil değiştirebilirlik boyutlarına göre ayrılabilecek yumuşak nesnelerin her birini keşfederken bu boyutlara özel el hareketleri olduğu da saptanmıştır. Buna ek olarak bir nesnenin malzemesini değerlendirirken insanların dokunulan nesnenin özelliklerine, edinmek istedikleri bilgiye ve nesne özellikleri ile edinilmek istenen bilginin etkileşimine bağlı olarak el hareketlerini (dokunsal keşifleri) uyarladığı gözlemlenmiştir. Bu yeni gelişmeler nesnenin dokunsal algısının anlaşılmasına katkı sağlamanın yanı sıra özerk robotların kavrama ve keşif yeteneklerini iyileştirmeye çalışılan alanlarda da yer bulabilir.

Destekleyen Kurum

Alman Araştıma Kurumu (DFG), ODTÜ BAP ve TÜBİTAK 1001

Proje Numarası

SFB/TRR 135, A5, DFG-project no. 502774891-ORA projesi “UNTOUCH” , AGEP-104-2022-10910, 122K914

Teşekkür

Müge Cavdan Alman Araştıma Kurumu (DFG) SFB/TRR 135, A5 ve DFG-project no. 502774891-ORA projesi “UNTOUCH” tarafından desteklenmiştir. Dicle Dövencioğlu ODTÜ BAP (AGEP-104-2022-10910) ve TÜBİTAK 1001 (122K914) projeleriyle desteklenmiştir.

Kaynakça

  • Baumgartner, E., Wiebel, C. B. ve Gegenfurtner, K. R. (2013). Visual and haptic representations of material properties. Multisensory Research, 26(5), 429–455. doi:10.1163/22134808-00002429
  • Bergmann Tiest, W. M. ve Kappers, A. M. (2007). Haptic and visual perception of roughness. Acta Psychologica, 124(2), 177-189. doi:10.1016/j.actpsy.2006.03.002
  • Bergmann Tiest, W. M. ve Kappers, A. M. (2008). Kinaesthetic and cutaneous contributions to the perception of compressibility. Haptics: Perception, Devices and Scenarios, 255-264. doi:10.1007/978-3-540-69057-3_30
  • Caldiran, O., Tan, H. Z. ve Basdogan, C. (2019). Visuo-haptic discrimination of viscoelastic materials. IEEE Transactions on Haptics, 12(4), 438-450. doi:10.1109/toh.2019.2924212
  • Calvert, G. A. ve Thesen, T. (2004). Multisensory integration: Methodological approaches and emerging principles in the human brain. Journal of Physiology- Paris, 98(1–3), 191–205. doi:10.1016/j.jphysparis.2004.03.018
  • Cavdan, M., Doerschner, K. ve Drewing, K. (2019). The many dimensions underlying perceived softness: How exploratory procedures are influenced by material and the perceptual task. 2019 IEEE World Haptics Conference (WHC). doi:10.1109/whc.2019.8816088
  • Cavdan, M., Doerschner, K. ve Drewing, K. (2021). Task and material properties interactively affect softness explorations along different dimensions. IEEE Transactions on Haptics, 14(3), 603-614. doi:10.1109/toh.2021.3069626
  • Cavdan, Müge, Drewing, K. ve Doerschner, K. (2021). The look and feel of soft are similar across different softness dimensions. Journal of Vision, 21(10), 20. doi:10.1167/jov.21.10.20
  • Cellini, C., Kaim, L. ve Drewing, K. (2013). Visual and haptic integration in the estimation of softness of deformable objects. I-Perception, 4(8), 516-531. doi:10.1068/i0598
  • Dövencioǧlu, D. N., Üstün, F. S., Doerschner, K. ve Drewing, K. (2022). Hand explorations are determined by the characteristics of the perceptual space of real-world materials from silk to sand. Scientific Reports, 12(1). doi:10.1038/s41598-022-18901-6
  • Drewing, K. (2018). Judged roughness as a function of groove frequency and groove width in 3D-printed gratings. Haptics: Science, Technology, and Applications, 258-269. doi:10.1007/978-3-319-93445-7_23
  • Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69(6), 477- 491. doi:10.1037/h0046962
  • Higashi, K., Okamoto, S. ve Yamada, Y. (2018). Perceived hardness through actual and virtual damped natural vibrations. IEEE Transactions on Haptics, 11(4), 646-651. doi:10.1109/toh.2018.2841820
  • Higashi, K., Okamoto, S., Yamada, Y., Nagano, H. ve Konyo, M. (2019). Hardness perception based on dynamic stiffness in tapping. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02654
  • Hollins, M., Faldowski, R., Rao, S. ve Young, F. (1993). Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis. Perception & Psychophysics, 54(6), 697-705. doi:10.3758/bf03211795
  • Isleyen, A., Vardar, Y. ve Basdogan, C. (2020). Tactile roughness perception of virtual gratings by electrovibration. IEEE Transactions on Haptics, 13(3), 562-570. https://doi.org/10.1109/toh.2019.2959993
  • Katz, D. (1925). Der aufbau der tastwelt. Zeitschrif dur Psychologie, Leipzig: Barth.
  • Klatzky, R. ve Lederman, S. (1999). Tactile roughness perception with a rigid link interposed between skin and surface. Perception & Psychophysics, 61(4), 591- 607. https://doi.org/10.3758/bf03205532
  • Klatzky, R., Lederman, S. ve Metzger, V. (1985). Identifying objects by touch: An “expert system”. Perception & Psychophysics, 37(4), 299-302. https://doi.org/10.3758/bf03211351
  • LaMotte, R. H. (2000). Softness discrimination with a tool. Journal of Neurophysiology, 83(4), 1777-1786. doi:10.1152/jn.2000.83.4.1777
  • Lawrence, M., Kitada, R., Klatzky, R. ve Lederman, S. (2007). Haptic roughness perception of linear gratings via bare finger or rigid probe. Perception, 36(4), 547- 557. https://doi.org/10.1068/p5746
  • Lederman, S. ve Klatzky, R. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19(3), 342-368. https://doi.org/10.1016/0010-0285(87)90008-9
  • Lezkan, A., Metzger, A. ve Drewing, K. (2018). Active haptic exploration of softness: Indentation force is systematically related to prediction, sensation and motivation. Frontiers in Integrative Neuroscience, 12. https://doi.org/10.3389/fnint.2018.00059
  • Luca, M. D. (2016). Multisensory softness: Perceived compliance from multiple sources of information. London: Springer.
  • Metzger, A. ve Drewing, K. (2019). Effects of stimulus exploration length and time on the integration of information in haptic softness discrimination. IEEE Transactions On Haptics, 12(4), 451-460. https://doi.org/10.1109/toh.2019.2899298
  • Okamoto, S., Nagano, H. ve Yamada, Y. (2013). Psychophysical dimensions of tactile perception of textures. IEEE Transactions on Haptics, 6(1), 81-93. https://doi.org/10.1109/toh.2012.32
  • Sahli, R., Prot, A., Wang, A., Müser, M., Piovarči, M., Didyk, P. ve Bennewitz, R. (2020). Tactile perception of randomly rough surfaces. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72890-y
  • Sakamoto, M. ve Watanabe, J. (2017). Exploring tactile perceptual dimensions using materials associated with sensory vocabulary. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.00569
  • Sakamoto, M. ve Watanabe, J. (2018). Bouba/Kiki in touch: Associations between tactile perceptual qualities and Japanese phonemes. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.00295
  • Srinivasan, M. A. ve LaMotte, R. H. (1995). Tactual discrimination of softness. Journal of Neurophysiology, 73(1), 88-101. doi:10.1152/jn.1995.73.1.88
  • Thorpe, S., Fize, D. ve Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520-522. doi: 10.1038/381520a0
  • Üsü, K. ve Tönük, E. (2008). Yerinde-canlı indentör deneylerinden elde edilen yumuşak doku mekanik davranışını modellemek için sanki-doğrusal viskoelastik malzeme modelleri. Makina Tasarım ve Imalat Dergisi, 10(1), 32-40.
  • Vardar, Y., Wallraven, C. ve Kuchenbecker, K. J. (2019). Fingertip interaction metrics correlate with visual and haptic perception of real surfaces. 2019 IEEE World Haptics Conference (WHC). doi:10.1109/whc.2019.8816095
  • Xu, C., He, H., Hauser, S. C. ve Gerling, G. J. (2020). Tactile exploration strategies with natural compliant objects elicit virtual stiffness cues. IEEE Transactions on Haptics, 13(1), 4-10. doi:10.1109/toh.2019.2959767
  • Yıldız, G. ve Dövencioğlu, D. N. (2023, Kabul edildi) Keşifsel El Hareketlerinin Türkçe Adlandırılmasında Dokunsal Malzeme Algısının Rolü. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, X(X), 1-XX.
  • Zoeller, A. C., Lezkan, A., Paulun, V. C., Fleming, R. W. ve Drewing, K. (2019). Integration of prior knowledge during haptic exploration depends on information type. Journal of Vision, 19(4), 20. doi:10.1167/19.4.20

A REVIEW ON HAPTIC SOFTNESS PERCEPTION

Yıl 2023, , 1503 - 1523, 25.12.2023
https://doi.org/10.33171/dtcfjournal.2023.63.2.24

Öz

Softness is a material property that plays an essential role in our daily interactions with objects. The sense of touch, or haptic sense, provides us with valuable information about the shapes, functions, and material properties of objects. We use the sense of haptic softness in a wide variety of situations, from assessing the ripeness of the fruit we eat to the suitability of the clothes we wear. Accordingly, describing an object as soft can encompass a wide range of materials including fabric, hand cream, sand, or cat hair. In the engineering literature, the perception of haptic softness is commonly defined by compliance: the degree to which an object can be physically deformed by the effect of external forces. Consequently, the studies investigating different components of softness equated softness to the compliance of elastic materials. However, recent studies have shown that the perception of softness in humans cannot be explained by a single dimension. Instead, it has been determined that there are multiple perceptual dimensions of softness, each associated with specific hand movements (exploratory procedures) that can be used to explore and evaluate the softness of different objects. These perceptual dimensions of softness include surface softness, fluidity (viscosity), granularity, and deformability. Furthermore, people adapt their hand gestures and haptic explorations depending on the characteristics of the touched object, the information they want to acquire, and the interaction of the object's properties and the desired information. These new developments can contribute not only to the understanding of the perception of softness but also to improving the grasping and exploration abilities of autonomous robots

Proje Numarası

SFB/TRR 135, A5, DFG-project no. 502774891-ORA projesi “UNTOUCH” , AGEP-104-2022-10910, 122K914

Kaynakça

  • Baumgartner, E., Wiebel, C. B. ve Gegenfurtner, K. R. (2013). Visual and haptic representations of material properties. Multisensory Research, 26(5), 429–455. doi:10.1163/22134808-00002429
  • Bergmann Tiest, W. M. ve Kappers, A. M. (2007). Haptic and visual perception of roughness. Acta Psychologica, 124(2), 177-189. doi:10.1016/j.actpsy.2006.03.002
  • Bergmann Tiest, W. M. ve Kappers, A. M. (2008). Kinaesthetic and cutaneous contributions to the perception of compressibility. Haptics: Perception, Devices and Scenarios, 255-264. doi:10.1007/978-3-540-69057-3_30
  • Caldiran, O., Tan, H. Z. ve Basdogan, C. (2019). Visuo-haptic discrimination of viscoelastic materials. IEEE Transactions on Haptics, 12(4), 438-450. doi:10.1109/toh.2019.2924212
  • Calvert, G. A. ve Thesen, T. (2004). Multisensory integration: Methodological approaches and emerging principles in the human brain. Journal of Physiology- Paris, 98(1–3), 191–205. doi:10.1016/j.jphysparis.2004.03.018
  • Cavdan, M., Doerschner, K. ve Drewing, K. (2019). The many dimensions underlying perceived softness: How exploratory procedures are influenced by material and the perceptual task. 2019 IEEE World Haptics Conference (WHC). doi:10.1109/whc.2019.8816088
  • Cavdan, M., Doerschner, K. ve Drewing, K. (2021). Task and material properties interactively affect softness explorations along different dimensions. IEEE Transactions on Haptics, 14(3), 603-614. doi:10.1109/toh.2021.3069626
  • Cavdan, Müge, Drewing, K. ve Doerschner, K. (2021). The look and feel of soft are similar across different softness dimensions. Journal of Vision, 21(10), 20. doi:10.1167/jov.21.10.20
  • Cellini, C., Kaim, L. ve Drewing, K. (2013). Visual and haptic integration in the estimation of softness of deformable objects. I-Perception, 4(8), 516-531. doi:10.1068/i0598
  • Dövencioǧlu, D. N., Üstün, F. S., Doerschner, K. ve Drewing, K. (2022). Hand explorations are determined by the characteristics of the perceptual space of real-world materials from silk to sand. Scientific Reports, 12(1). doi:10.1038/s41598-022-18901-6
  • Drewing, K. (2018). Judged roughness as a function of groove frequency and groove width in 3D-printed gratings. Haptics: Science, Technology, and Applications, 258-269. doi:10.1007/978-3-319-93445-7_23
  • Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69(6), 477- 491. doi:10.1037/h0046962
  • Higashi, K., Okamoto, S. ve Yamada, Y. (2018). Perceived hardness through actual and virtual damped natural vibrations. IEEE Transactions on Haptics, 11(4), 646-651. doi:10.1109/toh.2018.2841820
  • Higashi, K., Okamoto, S., Yamada, Y., Nagano, H. ve Konyo, M. (2019). Hardness perception based on dynamic stiffness in tapping. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02654
  • Hollins, M., Faldowski, R., Rao, S. ve Young, F. (1993). Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis. Perception & Psychophysics, 54(6), 697-705. doi:10.3758/bf03211795
  • Isleyen, A., Vardar, Y. ve Basdogan, C. (2020). Tactile roughness perception of virtual gratings by electrovibration. IEEE Transactions on Haptics, 13(3), 562-570. https://doi.org/10.1109/toh.2019.2959993
  • Katz, D. (1925). Der aufbau der tastwelt. Zeitschrif dur Psychologie, Leipzig: Barth.
  • Klatzky, R. ve Lederman, S. (1999). Tactile roughness perception with a rigid link interposed between skin and surface. Perception & Psychophysics, 61(4), 591- 607. https://doi.org/10.3758/bf03205532
  • Klatzky, R., Lederman, S. ve Metzger, V. (1985). Identifying objects by touch: An “expert system”. Perception & Psychophysics, 37(4), 299-302. https://doi.org/10.3758/bf03211351
  • LaMotte, R. H. (2000). Softness discrimination with a tool. Journal of Neurophysiology, 83(4), 1777-1786. doi:10.1152/jn.2000.83.4.1777
  • Lawrence, M., Kitada, R., Klatzky, R. ve Lederman, S. (2007). Haptic roughness perception of linear gratings via bare finger or rigid probe. Perception, 36(4), 547- 557. https://doi.org/10.1068/p5746
  • Lederman, S. ve Klatzky, R. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19(3), 342-368. https://doi.org/10.1016/0010-0285(87)90008-9
  • Lezkan, A., Metzger, A. ve Drewing, K. (2018). Active haptic exploration of softness: Indentation force is systematically related to prediction, sensation and motivation. Frontiers in Integrative Neuroscience, 12. https://doi.org/10.3389/fnint.2018.00059
  • Luca, M. D. (2016). Multisensory softness: Perceived compliance from multiple sources of information. London: Springer.
  • Metzger, A. ve Drewing, K. (2019). Effects of stimulus exploration length and time on the integration of information in haptic softness discrimination. IEEE Transactions On Haptics, 12(4), 451-460. https://doi.org/10.1109/toh.2019.2899298
  • Okamoto, S., Nagano, H. ve Yamada, Y. (2013). Psychophysical dimensions of tactile perception of textures. IEEE Transactions on Haptics, 6(1), 81-93. https://doi.org/10.1109/toh.2012.32
  • Sahli, R., Prot, A., Wang, A., Müser, M., Piovarči, M., Didyk, P. ve Bennewitz, R. (2020). Tactile perception of randomly rough surfaces. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72890-y
  • Sakamoto, M. ve Watanabe, J. (2017). Exploring tactile perceptual dimensions using materials associated with sensory vocabulary. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.00569
  • Sakamoto, M. ve Watanabe, J. (2018). Bouba/Kiki in touch: Associations between tactile perceptual qualities and Japanese phonemes. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.00295
  • Srinivasan, M. A. ve LaMotte, R. H. (1995). Tactual discrimination of softness. Journal of Neurophysiology, 73(1), 88-101. doi:10.1152/jn.1995.73.1.88
  • Thorpe, S., Fize, D. ve Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520-522. doi: 10.1038/381520a0
  • Üsü, K. ve Tönük, E. (2008). Yerinde-canlı indentör deneylerinden elde edilen yumuşak doku mekanik davranışını modellemek için sanki-doğrusal viskoelastik malzeme modelleri. Makina Tasarım ve Imalat Dergisi, 10(1), 32-40.
  • Vardar, Y., Wallraven, C. ve Kuchenbecker, K. J. (2019). Fingertip interaction metrics correlate with visual and haptic perception of real surfaces. 2019 IEEE World Haptics Conference (WHC). doi:10.1109/whc.2019.8816095
  • Xu, C., He, H., Hauser, S. C. ve Gerling, G. J. (2020). Tactile exploration strategies with natural compliant objects elicit virtual stiffness cues. IEEE Transactions on Haptics, 13(1), 4-10. doi:10.1109/toh.2019.2959767
  • Yıldız, G. ve Dövencioğlu, D. N. (2023, Kabul edildi) Keşifsel El Hareketlerinin Türkçe Adlandırılmasında Dokunsal Malzeme Algısının Rolü. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, X(X), 1-XX.
  • Zoeller, A. C., Lezkan, A., Paulun, V. C., Fleming, R. W. ve Drewing, K. (2019). Integration of prior knowledge during haptic exploration depends on information type. Journal of Vision, 19(4), 20. doi:10.1167/19.4.20
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sanat ve Kültür Politikası
Bölüm İnceleme makalesi
Yazarlar

Müge Cavdan 0000-0003-3575-3849

Dicle Dövencioğlu 0000-0003-4981-4462

Proje Numarası SFB/TRR 135, A5, DFG-project no. 502774891-ORA projesi “UNTOUCH” , AGEP-104-2022-10910, 122K914
Erken Görünüm Tarihi 20 Aralık 2023
Yayımlanma Tarihi 25 Aralık 2023
Gönderilme Tarihi 3 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Cavdan, M., & Dövencioğlu, D. (2023). DOKUNSAL YUMUŞAKLIK ALGISINA İLİŞKİN BİR İNCELEME. Ankara Üniversitesi Dil Ve Tarih-Coğrafya Fakültesi Dergisi, 63(2), 1503-1523. https://doi.org/10.33171/dtcfjournal.2023.63.2.24

Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi - dtcfdergisi@ankara.edu.tr

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.   22455