Araştırma Makalesi
BibTex RIS Kaynak Göster

RNA ve protein seviyelerinde temel biyobelirteçleri belirlemek için pulmoner arteriyel hipertansiyonun in silico analizi

Yıl 2023, , 2053 - 2067, 24.10.2023
https://doi.org/10.29130/dubited.1103902

Öz

Pulmoner arteriyel hipertansiyon (PAH), pulmoner arterlerde yüksek hipertansiyon ile işaretlenmiş kronik bir kardiyopulmoner bozukluktur. PAH için bir tam bir tedavi yoktur, mevcut ilaçlar hastalığın ilerlemesini azaltmaya yardımcı olabilir. Bu araştırma, biyoinformatik analiz yoluyla PAH'ın potansiyel protein ve RNA biyobelirteçlerini araştırmayı amaçlamıştır. Herkese açık Gene Expression Omnibus (GEO) veri tabanından erişilen iki PAH veri seti, diferansiyel olarak eksprese edilmiş genleri (DEG'ler) keşfetmek için kullanıldı. Yaygın DEG'ler için Gen Ontology (GO) ve Kyoto Genler ve Genler Ansiklopedisi (KEGG) yolsk analizleri DAVID aracıyla yapıldı. Cytoscape, protein-protein etkileşimini (PPI) oluşturmak ve ilk 10 hub genini seçmek için kullanıldı. DEG'leri ve hub genlerini hedefleyen transkripsiyon faktörleri (TF'ler) ve mikroRNA'lar (miRNA'lar), JASPAR veri tabanı kullanılarak araştırıldı. En iyi hub genlerini hedef alan potansiyel terapötikler keşfedildi. On hub geninin PAH patogeneziyle bağlantılı olduğu keşfedildi (CCL5, TLR4, TLR1, SPP1, CYBB, HGF, IGF1, SELL, CD163 ve POSTN). “Tümör nekroz faktörü biyosentetik sürecinin pozitif regülasyonu” ve “ücret benzeri reseptör sinyal yolu” sırasıyla en zenginleştirilmiş GO terimi ve KEGG yoludur. “hsa-mir-26b-5p, hsa-mir-146a-5p, hsa-mir-335-5p” ve FOXC1, YY1, GATA2, hub genlerini hedefleyen en iyi TF'lerdir. On hub genini hedef alan 21 ilaç keşfedildi. Sonuçlarımız, PAH hastaları için protein ve RNA seviyelerinde potansiyel terapötik hedefler olarak hizmet edebilecek PAH ve hub genleri, miRNA'lar ve 10 TF'nin patogenezini keşfetmeye yardımcı olacaktır.

Kaynakça

  • [1] Tuder RM, Archer SL, Dorfmuller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell NW, “Relevant issues in the pathology and pathobiology of pulmonary hypertension, ” J Am Coll Cardiol, 62(25 Suppl):D4–12, 2013.
  • [2] Simonneau G, Montani D, Celermajer DS, et al., “Haemodynamic definitions and updated clinical classification of pulmonary hypertension, ” Eur Respir, 53(1), 2019.
  • [3] Edgar R, Domrachev M, Lash AE., Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 30(1):207-10, 2002.
  • [4] Mi, , Muruganujan, A, and Thomas, P, “PANTHER in Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees,” Nucleic Acids Res,. 41(Database issue), D377-386, 2013. [5] Huang DW, Sherman BT, Lempicki RA, “Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resource,” Nature Protoc, 4(1):44-57, 2009.
  • [6] Warde-Farley, D, Donaldson, S. L, Comes, O, Zuberi, K, Badrawi, R, Chao, P, Franz, M, Grouios, C, Kazi, F, F, Lopes, C T, Maitland, A, Mostafavi, S, Montojo, J, Shao, Q, Wright, G, Bader, G D, & Morris, Q, “The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function,” Nucleic acids research 38(Web Server issue), W214–W220, 2010.
  • [7] Xia, J, Gill, E E, and Hancock, R E, “NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data,” Nat. Protoc, 10,823–844, 2015.
  • [8] Khan, A, Fornes, O, Stigliani, A, Gheorghe, M, Castro-Mondragon, J A, Van Der Lee, R, et al., “JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework,” Nucleic Acids Res, 46, D260–D266, 2018.
  • [9] Sheng-Da Hsu, Feng-Mao Lin, Wei-Yun Wu, Chao Liang, Wei-Chih Huang, Wen-Ling Chan, Wen-Ting Tsai, Goun-Zhou Chen, Chia-Jung Lee, Chih-Min Chiu, Chia-Hung Chien, Ming-Chia Wu, Chi-Ying Huang, Ann-Ping Tsou, Hsien-Da Huang, “ miRTarBase: a database curates experimentally validated microRNA–target interactions,” Nucleic Acids Research Volume, 39, Issue suppl_1, Pages D163–D169, 2011.
  • [10] Xia J, Gill EE, Hancock RE., “NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data,” Nat Protoc, 10(6):823-44, 2015.
  • [11] Cotto, K C, Wagner, A H, Feng, Y Y, Kiwala, S, Coffman, A C, Spies G, Wollam, A, Spies, N C, Griffith, O L, & Griffith, M, “DGIdb 3.0: a redesign and expansion of the drug-gene interaction database,” Nucleic acids research 46(D1), D1068–D1073, 2018.
  • [12] Soon E, Crosby A, Southwood M, Yang P, Tajsic T, Toshner M, Appleby S, Shanahan CM, Bloch KD, Pepke-Zaba J, Upton P, Morrell NW. , “Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension.,”Am J Respir Crit Care Med, 192:859–72, 2015.
  • [13] Dong H, Li X, Cai M, Zhang C, Mao W, Wang Y, Xu Q, Chen M, Wang L, Huang X., “Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension,” Aging (Albany NY) 13:14234-14257, 2021. [14] Thenappan T, Chan SY, Weir EK., “Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension,” Am J Physiol Heart Circ Physiol, 315:H1322–31, 2018.
  • [15] Rabinovitch M, Guignabert C, Humbert M, et al, “Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension,” Circ Res, 115 (1):165–175, 2014.
  • [16] Marsh LM, Jandl K, Grünig G, et al., “The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension” Eur Respir J, 51 (1):1701214, 2018.
  • [17] Stearman RS, Bui QM, Speyer G, et al., “Systems analysis of the human pulmonary arterial hypertension lung transcriptome,” Am J Respir Cell Mol Biol, 60: 637–649, 2019.
  • [18] Zhang Q, Cao Y, Luo Q, Wang P, Shi P, Song C, E M, Ren J, Fu B, Sun H., “The transient receptor potential vanilloid-3 regulates hypoxia-mediated pulmonary artery smooth muscle cells proliferation via PI3K/AKT signaling pathway,” Cell Prolif, 51:e12436, 2018.
  • [19] Wu J, Yu Z, Su D, “BMP4 protects rat pulmonary arterial smooth muscle cells from apoptosis by PI3K/AKT/Smad1/5/8 signaling,” Int J Mol Sci, 15:13738–54, 2014.
  • [20] Courboulin A, Ranchoux B, Cohen-Kaminsky S, Perros F, Bonnet, “MicroRNA networks in pulmonary arterial hypertension: share mechanisms with cancer?,” Curr Opin Oncol, 28(1):72-82, 2016.
  • [21] Caruso, P, Dunmore, B J, Schlosser, K, Schoors, S, Dos Santos, C, Perez-Iratxeta, C, Lavoie, J R, Zhang, H, Long, L, Flockton, A R, Frid, . G, Upton, P D, D'Alessandro, A, Hadinnapola, C, Kiskin, F N, Taha, M, Hurst, L A, Ormiston, M L, Hata, A, Stenmark, K R, Morrell, N.W., “Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2,” Circulation, 136(25), 2451–2467, 2017.
  • [22] Chan Li, Zeyu Zhang, Qian Xu, Ruizheng Shi, “Comprehensive Analyses of miRNA-mRNA Network and Potential Drugs in Idiopathic Pulmonary Arterial Hypertensioni,” BioMed Research International, vol. 2020, Article ID 5156304, 10 pages, 2020.
  • [23] Yao, X, Jing, T, Wang, T, Gu, C, Chen, X, Chen, F, Feng, H, Zhao, H, Chen, D, & Ma, W (2021). Molecular Characterization and Elucidation of Pathways to Identify Novel Therapeutic Targets in Pulmonary Arterial Hypertension. Frontiers in physiology, 12, 694702, 2021.
  • [24] Zeng, Y, Li, N, Zheng, Z, Chen, R, Peng, M, Liu, W, Zhu, J, Zeng, M, Cheng, J, & Hong, C, “Screening of Hub Genes Associated with Pulmonary Arterial Hypertension by Integrated Bioinformatic Analysis,” BioMed research international, 6626094.
  • [25] Saker, M, Lipskaia, L, Marcos, E, Abid, S, Parpaleix, A, Houssaini, A, Validire, P, Girard, P, Noureddine, H, Boyer, L, Vienney, N, Amsellem, V, Marguerit, L, Maitre, B, Derumeaux, G, Dubois-Rande, J L, Jourdan-Lesaux, C, Delcroix, M, Quarck, R, & Adnot, S, “Osteopontin, a Key Mediator Expressed by Senescent Pulmonary Vascular Cells in Pulmonary Hypertension Arteriosclerosis,” Thrombosis, and Vascular biology, 36(9) 1879–1890, 2016.
  • [26] Abid, S, Marcos, E, Parpaleix, A, Amsellem, V, Breau, M, Houssaini, A, Vienney, N, Lefevre, M, Derumeaux, G, Evans, S, Hubeau, C, Delcroix, M, Quarck, R, Adnot, S, & Lipskaia, L, “CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension,” The European respiratory journal, 54(4), 1802308, 2019.
  • [27] Xu, J, Yang, Y, Yang, Y, & Xiong, C, “Identification of Potential Risk Genes and the Immune Landscape of Idiopathic Pulmonary Arterial Hypertension via Microarray Gene Expression Dataset Reanalysis,” Genes, 12(1), 125, 2021.
  • [28] Sadamura-Takenaka Y, Ito T, Noma S, Oyama Y, Yamada S, Kawahara KI, et al., “HMGB1 promotes the development of pulmonary arterial hypertension in rats,” PLoS ONE, 9:e102482, 2014.
  • [29] Suzuki T, Carrier EJ, Talati MA, Rathinasabapathy A, Chen X, Nishimura R, et al., “Isolation and characterization of endothelial-to-mesenchymal transition-cells in pulmonary arterial hypertension,” Am J Physiol Lung Cell Mol Physiol, 314:L118–126, 2017. [30] Gerges C, Lang I, “Targeting inflammation and immunity in pulmonary arterial hypertension: any easier after the CANTOS proof-of-concept that anti-inflammation cuts cardiovascular events?,” Pulm Circ, 8: 2045893218754855, 2018.
  • [31] Farkas D, Roger Thompson AA, Bhagwani AR, Hultman S, Ji H, Kotha N, et al., “Toll-like receptor 3 is a therapeutic target for pulmonary hypertension.,” Am J Respir Crit Care Med, 199:199–210, 2019.
  • [32] Pang, Y, Liang, MT, Gong, Y et al., “HGF Reduces Disease Severity and Inflammation by Attenuating the NF-κB Signaling in a Rat Model of Pulmonary Artery Hypertension,” Inflammation, 41, 924–931, 2018.
  • [33] Dewachter L, Dewachter C, Belhaj A, Lalande S, Rondelet B, Remmelink M, Vachiery J, Naeije R, “Insulin-like growth-factor-1 contributes to the pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension,” European Respiratpry Journal, 44:P316, 2014.
  • [34] Ramakrishnan L, Mumby S, Wort J, Quinlan G, “CD163 is expressed and modulated in human pulmonary artery smooth muscle cells: Implications for pulmonary artery hypertension,” European Respiratory Journal, 46 (suppl 59), 2015.
  • [35] Schwanekamp JA, Lorts A, Vagnozzi RJ, Vanhoutte D, Molkentin JD, “Deletion of periostin protects against atherosclerosis in mice by altering inflammation and extracellular matrix remodeling,” Arterioscler Thromb Vasc Biol, 36:60–68, 2016.
  • [36] Abdul-Salam VB, Wharton J, Cupitt J, Berryman M, Edwards RJ, Wilkins MR., “Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension,” Circulation, 122:2058–2067, 2010.
  • [37] Nie, X, Shen, C, Tan, J, Wu, Z, Wang, W, Chen, Y, Dai, Y, Yang, X, Ye, S, Chen, J, & Bian, J S, “Periostin: A Potential Therapeutic Target For Pulmonary Hypertension?,” Circulation research, 127(9), 1138–1152, 2020.
  • [38] Hsieh Y-C, Lee K-C, Wu P-S, Huo T-I, Huang Y-H, Hou M-C, Lin H-C, “Eritoran Attenuates Hepatic Inflammation and Fibrosis in Mice with Chronic Liver Injury,” Cells, 10(6):1562, 2021.
  • [39] Dong, F, Zhang, J, Chen, X, Zhang, S, Zhu, L, Peng, Y, & Guo, Z, “Chrysin Alleviates Monocrotaline-Induced Pulmonary Hypertension in Rats Through Regulation of Intracellular Calcium Homeostasis in Pulmonary Arterial Smooth Muscle Cells,” Journal of cardiovascular pharmacology, 75(6), 596–602, 2020.
  • [40] Hoeper, M M, Barst, R J, Bourge, R C, Feldman, J, Frost, A. E, Galié, N, Gómez-Sánchez, M A, Grimminger, F, Grünig, E, Hassoun, P. M, Morrell, N W, Peacock, A J, Satoh, T, Simonneau, G, Tapson, V F, Torres, F, Lawrence, D, Quinn, D A, & Ghofrani, H A., “Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study,” Circulation, 127(10) 1128–1138, 2013.

In silico analysis of pulmonary arterial hypertension to identify key biomarkers at protein and RNA levels

Yıl 2023, , 2053 - 2067, 24.10.2023
https://doi.org/10.29130/dubited.1103902

Öz

Pulmonary arterial hypertension (PAH) is a chronic cardiopulmonary disorder marked by a raised hypertension in the pulmonary arteries. There is no remedy for PAH, existing medications can help reduce the disease’s progression. This research aimed to investigate potential protein and RNA biomarkers of PAH by bioinformatic analysis. Two PAH datasets accessed from the publicly available Gene Expression Omnibus (GEO) database were used to discover differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for common DEGs were conducted by the DAVID tool. Cytoscape was used to create the protein-protein interaction (PPI) and pick the top 10 hub genes. The transcription factors (TFs) and microRNAs (miRNAs) that target DEGs and hub genes were investigated using the JASPAR database. Potential therapeutics that target the top hub genes have been discovered. Ten hub genes were discovered to be linked to the pathogenesis of PAH (CCL5, TLR4, TLR1, SPP1, CYBB, HGF, IGF1, SELL, CD163, and POSTN). “Positive regulation of tumor necrosis factor biosynthetic process” and a “toll-like receptor signaling pathway” are the most enriched GO term and KEGG pathway, respectively. “hsa-mir-26b-5p, hsa-mir-146a-5p, hsa-mir-335-5p” and FOXC1, YY1, GATA2 are the top TFs targeting hub genes. 21 drugs targeting ten hub genes have been discovered. Our results would help to discover the pathogenesis of PAH and hub genes, miRNAs and 10 TFs that might serve as potential therapeutic targets at protein and RNA levels for PAH patients.

Kaynakça

  • [1] Tuder RM, Archer SL, Dorfmuller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell NW, “Relevant issues in the pathology and pathobiology of pulmonary hypertension, ” J Am Coll Cardiol, 62(25 Suppl):D4–12, 2013.
  • [2] Simonneau G, Montani D, Celermajer DS, et al., “Haemodynamic definitions and updated clinical classification of pulmonary hypertension, ” Eur Respir, 53(1), 2019.
  • [3] Edgar R, Domrachev M, Lash AE., Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 30(1):207-10, 2002.
  • [4] Mi, , Muruganujan, A, and Thomas, P, “PANTHER in Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees,” Nucleic Acids Res,. 41(Database issue), D377-386, 2013. [5] Huang DW, Sherman BT, Lempicki RA, “Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resource,” Nature Protoc, 4(1):44-57, 2009.
  • [6] Warde-Farley, D, Donaldson, S. L, Comes, O, Zuberi, K, Badrawi, R, Chao, P, Franz, M, Grouios, C, Kazi, F, F, Lopes, C T, Maitland, A, Mostafavi, S, Montojo, J, Shao, Q, Wright, G, Bader, G D, & Morris, Q, “The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function,” Nucleic acids research 38(Web Server issue), W214–W220, 2010.
  • [7] Xia, J, Gill, E E, and Hancock, R E, “NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data,” Nat. Protoc, 10,823–844, 2015.
  • [8] Khan, A, Fornes, O, Stigliani, A, Gheorghe, M, Castro-Mondragon, J A, Van Der Lee, R, et al., “JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework,” Nucleic Acids Res, 46, D260–D266, 2018.
  • [9] Sheng-Da Hsu, Feng-Mao Lin, Wei-Yun Wu, Chao Liang, Wei-Chih Huang, Wen-Ling Chan, Wen-Ting Tsai, Goun-Zhou Chen, Chia-Jung Lee, Chih-Min Chiu, Chia-Hung Chien, Ming-Chia Wu, Chi-Ying Huang, Ann-Ping Tsou, Hsien-Da Huang, “ miRTarBase: a database curates experimentally validated microRNA–target interactions,” Nucleic Acids Research Volume, 39, Issue suppl_1, Pages D163–D169, 2011.
  • [10] Xia J, Gill EE, Hancock RE., “NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data,” Nat Protoc, 10(6):823-44, 2015.
  • [11] Cotto, K C, Wagner, A H, Feng, Y Y, Kiwala, S, Coffman, A C, Spies G, Wollam, A, Spies, N C, Griffith, O L, & Griffith, M, “DGIdb 3.0: a redesign and expansion of the drug-gene interaction database,” Nucleic acids research 46(D1), D1068–D1073, 2018.
  • [12] Soon E, Crosby A, Southwood M, Yang P, Tajsic T, Toshner M, Appleby S, Shanahan CM, Bloch KD, Pepke-Zaba J, Upton P, Morrell NW. , “Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension.,”Am J Respir Crit Care Med, 192:859–72, 2015.
  • [13] Dong H, Li X, Cai M, Zhang C, Mao W, Wang Y, Xu Q, Chen M, Wang L, Huang X., “Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension,” Aging (Albany NY) 13:14234-14257, 2021. [14] Thenappan T, Chan SY, Weir EK., “Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension,” Am J Physiol Heart Circ Physiol, 315:H1322–31, 2018.
  • [15] Rabinovitch M, Guignabert C, Humbert M, et al, “Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension,” Circ Res, 115 (1):165–175, 2014.
  • [16] Marsh LM, Jandl K, Grünig G, et al., “The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension” Eur Respir J, 51 (1):1701214, 2018.
  • [17] Stearman RS, Bui QM, Speyer G, et al., “Systems analysis of the human pulmonary arterial hypertension lung transcriptome,” Am J Respir Cell Mol Biol, 60: 637–649, 2019.
  • [18] Zhang Q, Cao Y, Luo Q, Wang P, Shi P, Song C, E M, Ren J, Fu B, Sun H., “The transient receptor potential vanilloid-3 regulates hypoxia-mediated pulmonary artery smooth muscle cells proliferation via PI3K/AKT signaling pathway,” Cell Prolif, 51:e12436, 2018.
  • [19] Wu J, Yu Z, Su D, “BMP4 protects rat pulmonary arterial smooth muscle cells from apoptosis by PI3K/AKT/Smad1/5/8 signaling,” Int J Mol Sci, 15:13738–54, 2014.
  • [20] Courboulin A, Ranchoux B, Cohen-Kaminsky S, Perros F, Bonnet, “MicroRNA networks in pulmonary arterial hypertension: share mechanisms with cancer?,” Curr Opin Oncol, 28(1):72-82, 2016.
  • [21] Caruso, P, Dunmore, B J, Schlosser, K, Schoors, S, Dos Santos, C, Perez-Iratxeta, C, Lavoie, J R, Zhang, H, Long, L, Flockton, A R, Frid, . G, Upton, P D, D'Alessandro, A, Hadinnapola, C, Kiskin, F N, Taha, M, Hurst, L A, Ormiston, M L, Hata, A, Stenmark, K R, Morrell, N.W., “Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2,” Circulation, 136(25), 2451–2467, 2017.
  • [22] Chan Li, Zeyu Zhang, Qian Xu, Ruizheng Shi, “Comprehensive Analyses of miRNA-mRNA Network and Potential Drugs in Idiopathic Pulmonary Arterial Hypertensioni,” BioMed Research International, vol. 2020, Article ID 5156304, 10 pages, 2020.
  • [23] Yao, X, Jing, T, Wang, T, Gu, C, Chen, X, Chen, F, Feng, H, Zhao, H, Chen, D, & Ma, W (2021). Molecular Characterization and Elucidation of Pathways to Identify Novel Therapeutic Targets in Pulmonary Arterial Hypertension. Frontiers in physiology, 12, 694702, 2021.
  • [24] Zeng, Y, Li, N, Zheng, Z, Chen, R, Peng, M, Liu, W, Zhu, J, Zeng, M, Cheng, J, & Hong, C, “Screening of Hub Genes Associated with Pulmonary Arterial Hypertension by Integrated Bioinformatic Analysis,” BioMed research international, 6626094.
  • [25] Saker, M, Lipskaia, L, Marcos, E, Abid, S, Parpaleix, A, Houssaini, A, Validire, P, Girard, P, Noureddine, H, Boyer, L, Vienney, N, Amsellem, V, Marguerit, L, Maitre, B, Derumeaux, G, Dubois-Rande, J L, Jourdan-Lesaux, C, Delcroix, M, Quarck, R, & Adnot, S, “Osteopontin, a Key Mediator Expressed by Senescent Pulmonary Vascular Cells in Pulmonary Hypertension Arteriosclerosis,” Thrombosis, and Vascular biology, 36(9) 1879–1890, 2016.
  • [26] Abid, S, Marcos, E, Parpaleix, A, Amsellem, V, Breau, M, Houssaini, A, Vienney, N, Lefevre, M, Derumeaux, G, Evans, S, Hubeau, C, Delcroix, M, Quarck, R, Adnot, S, & Lipskaia, L, “CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension,” The European respiratory journal, 54(4), 1802308, 2019.
  • [27] Xu, J, Yang, Y, Yang, Y, & Xiong, C, “Identification of Potential Risk Genes and the Immune Landscape of Idiopathic Pulmonary Arterial Hypertension via Microarray Gene Expression Dataset Reanalysis,” Genes, 12(1), 125, 2021.
  • [28] Sadamura-Takenaka Y, Ito T, Noma S, Oyama Y, Yamada S, Kawahara KI, et al., “HMGB1 promotes the development of pulmonary arterial hypertension in rats,” PLoS ONE, 9:e102482, 2014.
  • [29] Suzuki T, Carrier EJ, Talati MA, Rathinasabapathy A, Chen X, Nishimura R, et al., “Isolation and characterization of endothelial-to-mesenchymal transition-cells in pulmonary arterial hypertension,” Am J Physiol Lung Cell Mol Physiol, 314:L118–126, 2017. [30] Gerges C, Lang I, “Targeting inflammation and immunity in pulmonary arterial hypertension: any easier after the CANTOS proof-of-concept that anti-inflammation cuts cardiovascular events?,” Pulm Circ, 8: 2045893218754855, 2018.
  • [31] Farkas D, Roger Thompson AA, Bhagwani AR, Hultman S, Ji H, Kotha N, et al., “Toll-like receptor 3 is a therapeutic target for pulmonary hypertension.,” Am J Respir Crit Care Med, 199:199–210, 2019.
  • [32] Pang, Y, Liang, MT, Gong, Y et al., “HGF Reduces Disease Severity and Inflammation by Attenuating the NF-κB Signaling in a Rat Model of Pulmonary Artery Hypertension,” Inflammation, 41, 924–931, 2018.
  • [33] Dewachter L, Dewachter C, Belhaj A, Lalande S, Rondelet B, Remmelink M, Vachiery J, Naeije R, “Insulin-like growth-factor-1 contributes to the pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension,” European Respiratpry Journal, 44:P316, 2014.
  • [34] Ramakrishnan L, Mumby S, Wort J, Quinlan G, “CD163 is expressed and modulated in human pulmonary artery smooth muscle cells: Implications for pulmonary artery hypertension,” European Respiratory Journal, 46 (suppl 59), 2015.
  • [35] Schwanekamp JA, Lorts A, Vagnozzi RJ, Vanhoutte D, Molkentin JD, “Deletion of periostin protects against atherosclerosis in mice by altering inflammation and extracellular matrix remodeling,” Arterioscler Thromb Vasc Biol, 36:60–68, 2016.
  • [36] Abdul-Salam VB, Wharton J, Cupitt J, Berryman M, Edwards RJ, Wilkins MR., “Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension,” Circulation, 122:2058–2067, 2010.
  • [37] Nie, X, Shen, C, Tan, J, Wu, Z, Wang, W, Chen, Y, Dai, Y, Yang, X, Ye, S, Chen, J, & Bian, J S, “Periostin: A Potential Therapeutic Target For Pulmonary Hypertension?,” Circulation research, 127(9), 1138–1152, 2020.
  • [38] Hsieh Y-C, Lee K-C, Wu P-S, Huo T-I, Huang Y-H, Hou M-C, Lin H-C, “Eritoran Attenuates Hepatic Inflammation and Fibrosis in Mice with Chronic Liver Injury,” Cells, 10(6):1562, 2021.
  • [39] Dong, F, Zhang, J, Chen, X, Zhang, S, Zhu, L, Peng, Y, & Guo, Z, “Chrysin Alleviates Monocrotaline-Induced Pulmonary Hypertension in Rats Through Regulation of Intracellular Calcium Homeostasis in Pulmonary Arterial Smooth Muscle Cells,” Journal of cardiovascular pharmacology, 75(6), 596–602, 2020.
  • [40] Hoeper, M M, Barst, R J, Bourge, R C, Feldman, J, Frost, A. E, Galié, N, Gómez-Sánchez, M A, Grimminger, F, Grünig, E, Hassoun, P. M, Morrell, N W, Peacock, A J, Satoh, T, Simonneau, G, Tapson, V F, Torres, F, Lawrence, D, Quinn, D A, & Ghofrani, H A., “Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study,” Circulation, 127(10) 1128–1138, 2013.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sevinç Akçay 0000-0003-2961-3970

Yayımlanma Tarihi 24 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Akçay, S. (2023). In silico analysis of pulmonary arterial hypertension to identify key biomarkers at protein and RNA levels. Duzce University Journal of Science and Technology, 11(4), 2053-2067. https://doi.org/10.29130/dubited.1103902
AMA Akçay S. In silico analysis of pulmonary arterial hypertension to identify key biomarkers at protein and RNA levels. DÜBİTED. Ekim 2023;11(4):2053-2067. doi:10.29130/dubited.1103902
Chicago Akçay, Sevinç. “In Silico Analysis of Pulmonary Arterial Hypertension to Identify Key Biomarkers at Protein and RNA Levels”. Duzce University Journal of Science and Technology 11, sy. 4 (Ekim 2023): 2053-67. https://doi.org/10.29130/dubited.1103902.
EndNote Akçay S (01 Ekim 2023) In silico analysis of pulmonary arterial hypertension to identify key biomarkers at protein and RNA levels. Duzce University Journal of Science and Technology 11 4 2053–2067.
IEEE S. Akçay, “In silico analysis of pulmonary arterial hypertension to identify key biomarkers at protein and RNA levels”, DÜBİTED, c. 11, sy. 4, ss. 2053–2067, 2023, doi: 10.29130/dubited.1103902.
ISNAD Akçay, Sevinç. “In Silico Analysis of Pulmonary Arterial Hypertension to Identify Key Biomarkers at Protein and RNA Levels”. Duzce University Journal of Science and Technology 11/4 (Ekim 2023), 2053-2067. https://doi.org/10.29130/dubited.1103902.
JAMA Akçay S. In silico analysis of pulmonary arterial hypertension to identify key biomarkers at protein and RNA levels. DÜBİTED. 2023;11:2053–2067.
MLA Akçay, Sevinç. “In Silico Analysis of Pulmonary Arterial Hypertension to Identify Key Biomarkers at Protein and RNA Levels”. Duzce University Journal of Science and Technology, c. 11, sy. 4, 2023, ss. 2053-67, doi:10.29130/dubited.1103902.
Vancouver Akçay S. In silico analysis of pulmonary arterial hypertension to identify key biomarkers at protein and RNA levels. DÜBİTED. 2023;11(4):2053-67.