Araştırma Makalesi
BibTex RIS Kaynak Göster

Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu ile Uzaklaştırılması ve Kinetik Olarak İncelenmesi

Yıl 2024, , 1267 - 1278, 31.07.2024
https://doi.org/10.29130/dubited.1266968

Öz

Yaptığımız deneylerde atık sularda rastlanan Cr(VI) metalinin bertaraf için elektrik akımı etkisi altında elektromembran ekstraksiyonu prosesi uygulamaları gerçekleştirilmiş ve Cr(VI) metal katyonunun taşınımı verimli şekilde gerçekleştirilmiştir. Yapılan deneylerde elektriksel alan kullanımın sebebi Cr(VI)’nın ekstraksiyonunun kontrolünün sağlanarak transportun hızlı şekilde gerçekleşmesidir. Taşımayı gerçekleştirecek ligandlar mezo-oktametil kaliks[4]pirol ve oksim türevi olarak belirlenerek söz konusu iki ligandın parametrelerinin karşılaştırılması yapılmıştır. Sabit akımda ve voltajda kinetik veriler incelenerek her bir değişkenden belirli zamanlarda besleme ve alıcı faz hücrelerinden alınan numunelerden Cr(VI) metalinin konsantrasyon verileri UV-spektrofotometresi kullanılarak tespit edilmiştir. Sabit elektrik akımında Cr (VI)’nın besleme fazdan alıcı faza transportunda sentezlediğimiz polimer içerikli membran kullanarak polimer destek malzemesi olarak selüloz triasetat (CTA), plastikleştirici olarak 2-nitrofeniloktil eter (2-NPOE) kullanılmıştır. Hız sabiti (k), akış hızı (J) , geçirgenlik katsayısı (P) ve geri kazanım faktörü (% RF) gibi çeşitli kinetik dataları hesaplanmıştır. 100 dakikalık deney süresi sonucunda %78,25 geri kazanım elde edilerek transportda yüksek verim elde edildiği görülmüştür. Sonuçta kısa sürede EME-PIM (elektromembran-polimer içerikli membran) uygulamasında Cr(VI) metalinin geçiriminin yüksek bir şekilde sağlandığı saptanmıştır.

Kaynakça

  • [1] B. Keskin, B. Zeytuncu-Gökoğlu, and I. Koyuncu, “Polymer inclusion membrane applications for transport of metal ions: A critical review,” Chemosphere, vol. 279, 2021
  • [2] N. S. Abdul-Halim, N. F. Shoparwe, S. K. Weng, and N. S. W. Zulkefeli, “Heavy metal ions adsorption from CTA-aliquat 336 polymer inclusion membranes (PIMs): Experimental and kinetic study,” AIP Conf. Proc., vol. 2124, no. July, 2019
  • [3] N. Abdullah, N. Yusof, W. J. Lau, J. Jaafar, and A. F. Ismail, “Recent trends of heavy metal removal from water/wastewater by membrane technologies,” J. Ind. Eng. Chem., vol. 76, pp. 17–38, 2019
  • [4] C. Zhao et al., “A hybrid process of coprecipitation-induced crystallization-capacitive deionization-ion exchange process for heavy metals removal from hypersaline ternary precursor wastewater,” Chem. Eng. J., vol. 378, no. 180, p. 122136, 2019
  • [5] M. M. Matlock, B. S. Howerton, and D. A. Atwood, “Chemical precipitation of heavy metals from acid mine drainage,” Water Res., vol. 36, no. 19, pp. 4757–4764, 2002
  • [6] Q. Zhang et al., “Cumulative effects of pyrolysis temperature and process on properties, chemical speciation, and environmental risks of heavy metals in magnetic biochar derived from coagulation-flocculation sludge of swine wastewater,” J. Environ. Chem. Eng., vol. 8, no. 6, p. 104472, 2020
  • [7] U. Upadhyay, I. Sreedhar, S. A. Singh, C. M. Patel, and K. L. Anitha, “Recent advances in heavy metal removal by chitosan based adsorbents,” Carbohydr. Polym., vol. 251, no. August 2020, p. 117000, 2021
  • [8] R. Shrestha et al., “Technological trends in heavy metals removal from industrial wastewater: A review,” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105688, 2021
  • [9] M. I. G. S. Almeida, R. W. Cattrall, and S. D. Kolev, “Polymer inclusion membranes (PIMs) in chemical analysis - A review,” Anal. Chim. Acta, vol. 987, pp. 1–14, 2017
  • [10] D. Rana, T. Matsuura, M. Kassim, and A. Ismail, “Reverse Osmosis Membrane,” Handb. Membr. Sep., pp. 35–52, 2015
  • [11] A. Kaya, C. Onac, and H. K. Alpoguz, “A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current,” J. Hazard. Mater., 2016
  • [12] G. ÇALIK, A. AYTAÇ, and H. K. ALPOĞUZ, “DESTEKLİ Sivi Membranlarİle Cr(Vi) Metal Katyonunun ElektromembranEkstraksi̇yonu,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 8, no. 3, pp. 696–707, 2020
  • [13] Y.-Y. Y. Wang et al., “Supporting Information for Cu 2 + ) Complexes for Electrocatalytic Water Oxidation,” J. Am. Chem. Soc., 2017
  • [14] J. Li, R. Zhu, X. Shen, C. Huang “Functional materials and chemicals in electromembrane extraction” TrAC Trends in Analytical Chemistry Volume 150, May 2022
  • [15] K. V. Shestakov and S. I. Lazarev, “Method for Calculating Rational Process Parameters for Electromembrane Purification of Industrial Solutions and Waste Water in the Chemical Industry,” Chem. Pet. Eng., vol. 55, no. 1–2, pp. 63–67, 2019
  • [16] G. Çalık, A. Kaya, C. Onac, A. Aytaç, and H. K. Alpoguz, “Kinetıc analysıs of Cr(VI) transport wıth electromembrane processes,” J. Chem. Technol. Biotechnol., vol. 97, no. 3, pp. 662–667, 2022
  • [17] S. Pedersen-Bjergaard and K. E. Rasmussen, “Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids,” J. Chromatogr. A, vol. 1109, no. 2, pp. 183–190, 2006
  • [18] E. Fernández, L. Vårdal, L. Vidal, A. Canals, A. Gjelstad, and S. Pedersen-Bjergaard, “Complexation-mediated electromembrane extraction of highly polar basic drugs—a fundamental study with catecholamines in urine as model system,” Anal. Bioanal. Chem., vol. 409, no. 17, pp. 4215–4223, 2017
  • [19] L. E. E. Eibak, A. Gjelstad, K. E. Rasmussen, and S. Pedersen-Bjergaard, “Kinetic electro membrane extraction under stagnant conditions-Fast isolation of drugs from untreated human plasma,” J. Chromatogr. A, vol. 1217, no. 31, pp. 5050–5056, 2010
  • [20] S. Asadi, H. Tabani, and S. Nojavan, “Application of polyacrylamide gel as a new membrane in electromembrane extraction for the quantification of basic drugs in breast milk and wastewater samples,” J. Pharm. Biomed. Anal., vol. 151, pp. 178–185, 2018
  • [21] C. Huang, A. Gjelstad, and S. Pedersen-Bjergaard, “Organic solvents in electromembrane extraction: Recent insights,” Rev. Anal. Chem., vol. 35, no. 4, pp. 169–183, 2016, doi: 10.1515/revac-2016-0008.
  • [22] M. Amini, A. Rahbar-Kelishami, M. Alipour, and O. Vahidi, “Supported liquid membrane in metal ion separation: An overview,” J. Membr. Sci. Res., vol. 4, no. 3, pp. 121–135, 2018
  • [23] P. Venkateswaran, A. N. Gopalakrishnan, and K. Palanivelu, “Di(2-ethylhexyl)phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater,” J. Environ. Sci., vol. 19, no. 12, pp. 1446–1453, 2007
  • [24] P. R. Danesi, L. Reichley-Yinger, C. Cianetti, and P. G. Rickert, “Separation of Cobalt and Nickel by Liquid-Liquid Extraction and Supported Liquid Membranes with Di(2,4,4-Trimethylpentyl)Phosphinic Acid [Cyanex 272],” Solvent Extr. Ion Exch., vol. 2, no. 6, pp. 781–814, 1984
  • [25] P. R. Danesi, Separation Science and Technology Separation of Metal Species by Supported Liquid Membranes, no. May 2013. 2006.
  • [26] N. Drouin, P. Kubáň, S. Rudaz, S. Pedersen-Bjergaard, and J. Schappler, “Electromembrane extraction: Overview of the last decade,” TrAC - Trends Anal. Chem., vol. 113, pp. 357–363, 2019
  • [27] L. D. Nghiem, P. Mornane, I. D. Potter, J. M. Perera, R. W. Cattrall, and S. D. Kolev, “Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs),” J. Memb. Sci., vol. 281, no. 1–2, pp. 7–41, 2006

Removal of Cr(VI) Metal Cation by Electromembrane Extraction and Kinetic Analysis

Yıl 2024, , 1267 - 1278, 31.07.2024
https://doi.org/10.29130/dubited.1266968

Öz

In our experiments, electromembrane extraction process applications were carried out under the influence of electric current for the disposal of Cr(VI) metal found in wastewater, and the transport of Cr(VI) metal cation was carried out efficiently. The reason for the use of electric field in the experiments is that the extraction of Cr(VI) is controlled and the transport takes place quickly. The ligands that will carry out the transport were determined as meso-octamethyl calix[4]pyrrole and oxime derivatives, and the parameters of these two ligands were compared. By examining the kinetic data at constant current and voltage, the concentration data of Cr(VI) metal from the samples taken from the supply and receiver phase cells at certain times from each variable were determined using UV-spectrophotometer. In the transport of Cr (VI) from the feed phase to the acceptor phase in a constant electric current, we used the polymer-containing membrane we synthesized (cellulose triacetate (CTA) as the polymer support material, 2-nitrophenyloctyl ether (2-NPOE) as the plasticizer. Rate constant (k), flow Various kinetic data such as velocity (J), permeability coefficient (P) and recovery factor (% RF) were calculated.As a result of the 100-minute test period, it was seen that 78.25% recovery was achieved and high efficiency in transport was achieved.As a result, EME- It has been determined that the permeability of Cr(VI) metal is high in PIM application.

Kaynakça

  • [1] B. Keskin, B. Zeytuncu-Gökoğlu, and I. Koyuncu, “Polymer inclusion membrane applications for transport of metal ions: A critical review,” Chemosphere, vol. 279, 2021
  • [2] N. S. Abdul-Halim, N. F. Shoparwe, S. K. Weng, and N. S. W. Zulkefeli, “Heavy metal ions adsorption from CTA-aliquat 336 polymer inclusion membranes (PIMs): Experimental and kinetic study,” AIP Conf. Proc., vol. 2124, no. July, 2019
  • [3] N. Abdullah, N. Yusof, W. J. Lau, J. Jaafar, and A. F. Ismail, “Recent trends of heavy metal removal from water/wastewater by membrane technologies,” J. Ind. Eng. Chem., vol. 76, pp. 17–38, 2019
  • [4] C. Zhao et al., “A hybrid process of coprecipitation-induced crystallization-capacitive deionization-ion exchange process for heavy metals removal from hypersaline ternary precursor wastewater,” Chem. Eng. J., vol. 378, no. 180, p. 122136, 2019
  • [5] M. M. Matlock, B. S. Howerton, and D. A. Atwood, “Chemical precipitation of heavy metals from acid mine drainage,” Water Res., vol. 36, no. 19, pp. 4757–4764, 2002
  • [6] Q. Zhang et al., “Cumulative effects of pyrolysis temperature and process on properties, chemical speciation, and environmental risks of heavy metals in magnetic biochar derived from coagulation-flocculation sludge of swine wastewater,” J. Environ. Chem. Eng., vol. 8, no. 6, p. 104472, 2020
  • [7] U. Upadhyay, I. Sreedhar, S. A. Singh, C. M. Patel, and K. L. Anitha, “Recent advances in heavy metal removal by chitosan based adsorbents,” Carbohydr. Polym., vol. 251, no. August 2020, p. 117000, 2021
  • [8] R. Shrestha et al., “Technological trends in heavy metals removal from industrial wastewater: A review,” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105688, 2021
  • [9] M. I. G. S. Almeida, R. W. Cattrall, and S. D. Kolev, “Polymer inclusion membranes (PIMs) in chemical analysis - A review,” Anal. Chim. Acta, vol. 987, pp. 1–14, 2017
  • [10] D. Rana, T. Matsuura, M. Kassim, and A. Ismail, “Reverse Osmosis Membrane,” Handb. Membr. Sep., pp. 35–52, 2015
  • [11] A. Kaya, C. Onac, and H. K. Alpoguz, “A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current,” J. Hazard. Mater., 2016
  • [12] G. ÇALIK, A. AYTAÇ, and H. K. ALPOĞUZ, “DESTEKLİ Sivi Membranlarİle Cr(Vi) Metal Katyonunun ElektromembranEkstraksi̇yonu,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 8, no. 3, pp. 696–707, 2020
  • [13] Y.-Y. Y. Wang et al., “Supporting Information for Cu 2 + ) Complexes for Electrocatalytic Water Oxidation,” J. Am. Chem. Soc., 2017
  • [14] J. Li, R. Zhu, X. Shen, C. Huang “Functional materials and chemicals in electromembrane extraction” TrAC Trends in Analytical Chemistry Volume 150, May 2022
  • [15] K. V. Shestakov and S. I. Lazarev, “Method for Calculating Rational Process Parameters for Electromembrane Purification of Industrial Solutions and Waste Water in the Chemical Industry,” Chem. Pet. Eng., vol. 55, no. 1–2, pp. 63–67, 2019
  • [16] G. Çalık, A. Kaya, C. Onac, A. Aytaç, and H. K. Alpoguz, “Kinetıc analysıs of Cr(VI) transport wıth electromembrane processes,” J. Chem. Technol. Biotechnol., vol. 97, no. 3, pp. 662–667, 2022
  • [17] S. Pedersen-Bjergaard and K. E. Rasmussen, “Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids,” J. Chromatogr. A, vol. 1109, no. 2, pp. 183–190, 2006
  • [18] E. Fernández, L. Vårdal, L. Vidal, A. Canals, A. Gjelstad, and S. Pedersen-Bjergaard, “Complexation-mediated electromembrane extraction of highly polar basic drugs—a fundamental study with catecholamines in urine as model system,” Anal. Bioanal. Chem., vol. 409, no. 17, pp. 4215–4223, 2017
  • [19] L. E. E. Eibak, A. Gjelstad, K. E. Rasmussen, and S. Pedersen-Bjergaard, “Kinetic electro membrane extraction under stagnant conditions-Fast isolation of drugs from untreated human plasma,” J. Chromatogr. A, vol. 1217, no. 31, pp. 5050–5056, 2010
  • [20] S. Asadi, H. Tabani, and S. Nojavan, “Application of polyacrylamide gel as a new membrane in electromembrane extraction for the quantification of basic drugs in breast milk and wastewater samples,” J. Pharm. Biomed. Anal., vol. 151, pp. 178–185, 2018
  • [21] C. Huang, A. Gjelstad, and S. Pedersen-Bjergaard, “Organic solvents in electromembrane extraction: Recent insights,” Rev. Anal. Chem., vol. 35, no. 4, pp. 169–183, 2016, doi: 10.1515/revac-2016-0008.
  • [22] M. Amini, A. Rahbar-Kelishami, M. Alipour, and O. Vahidi, “Supported liquid membrane in metal ion separation: An overview,” J. Membr. Sci. Res., vol. 4, no. 3, pp. 121–135, 2018
  • [23] P. Venkateswaran, A. N. Gopalakrishnan, and K. Palanivelu, “Di(2-ethylhexyl)phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater,” J. Environ. Sci., vol. 19, no. 12, pp. 1446–1453, 2007
  • [24] P. R. Danesi, L. Reichley-Yinger, C. Cianetti, and P. G. Rickert, “Separation of Cobalt and Nickel by Liquid-Liquid Extraction and Supported Liquid Membranes with Di(2,4,4-Trimethylpentyl)Phosphinic Acid [Cyanex 272],” Solvent Extr. Ion Exch., vol. 2, no. 6, pp. 781–814, 1984
  • [25] P. R. Danesi, Separation Science and Technology Separation of Metal Species by Supported Liquid Membranes, no. May 2013. 2006.
  • [26] N. Drouin, P. Kubáň, S. Rudaz, S. Pedersen-Bjergaard, and J. Schappler, “Electromembrane extraction: Overview of the last decade,” TrAC - Trends Anal. Chem., vol. 113, pp. 357–363, 2019
  • [27] L. D. Nghiem, P. Mornane, I. D. Potter, J. M. Perera, R. W. Cattrall, and S. D. Kolev, “Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs),” J. Memb. Sci., vol. 281, no. 1–2, pp. 7–41, 2006
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gizem Argun 0000-0002-4734-3532

Gamze Çalık 0000-0003-4365-0823

Hamza Korkmaz Alpoğuz 0000-0003-3389-4517

Yayımlanma Tarihi 31 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Argun, G., Çalık, G., & Alpoğuz, H. K. (2024). Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu ile Uzaklaştırılması ve Kinetik Olarak İncelenmesi. Duzce University Journal of Science and Technology, 12(3), 1267-1278. https://doi.org/10.29130/dubited.1266968
AMA Argun G, Çalık G, Alpoğuz HK. Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu ile Uzaklaştırılması ve Kinetik Olarak İncelenmesi. DÜBİTED. Temmuz 2024;12(3):1267-1278. doi:10.29130/dubited.1266968
Chicago Argun, Gizem, Gamze Çalık, ve Hamza Korkmaz Alpoğuz. “Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu Ile Uzaklaştırılması Ve Kinetik Olarak İncelenmesi”. Duzce University Journal of Science and Technology 12, sy. 3 (Temmuz 2024): 1267-78. https://doi.org/10.29130/dubited.1266968.
EndNote Argun G, Çalık G, Alpoğuz HK (01 Temmuz 2024) Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu ile Uzaklaştırılması ve Kinetik Olarak İncelenmesi. Duzce University Journal of Science and Technology 12 3 1267–1278.
IEEE G. Argun, G. Çalık, ve H. K. Alpoğuz, “Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu ile Uzaklaştırılması ve Kinetik Olarak İncelenmesi”, DÜBİTED, c. 12, sy. 3, ss. 1267–1278, 2024, doi: 10.29130/dubited.1266968.
ISNAD Argun, Gizem vd. “Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu Ile Uzaklaştırılması Ve Kinetik Olarak İncelenmesi”. Duzce University Journal of Science and Technology 12/3 (Temmuz 2024), 1267-1278. https://doi.org/10.29130/dubited.1266968.
JAMA Argun G, Çalık G, Alpoğuz HK. Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu ile Uzaklaştırılması ve Kinetik Olarak İncelenmesi. DÜBİTED. 2024;12:1267–1278.
MLA Argun, Gizem vd. “Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu Ile Uzaklaştırılması Ve Kinetik Olarak İncelenmesi”. Duzce University Journal of Science and Technology, c. 12, sy. 3, 2024, ss. 1267-78, doi:10.29130/dubited.1266968.
Vancouver Argun G, Çalık G, Alpoğuz HK. Cr(VI) Metal Katyonunun Elektromembran Ekstraksiyonu ile Uzaklaştırılması ve Kinetik Olarak İncelenmesi. DÜBİTED. 2024;12(3):1267-78.