Determination of Modified Mohr-Coulomb Damage Model Parameters for DH780 Steel in Finite Element Analysis
Yıl 2023,
, 2309 - 2320, 29.12.2023
Tolgahan Civek
,
Nuri Şen
,
Oktay Elkoca
Öz
In sheet metal forming processes, tearing problems might be occasionally encountered due to many reasons such as incorrect forming parameters. The trial and error methods that are used to solve such problems, on many occasions, are time-consuming and inefficient in terms of finding the correct forming parameters or die design for the forming process. The finite element analysis method, on the other hand, can be used as a tool that is both time and cost-saving. However, in order to effectively exploit the use of finite element analysis in sheet metal forming operations, the material that is used to be formed needs to be well characterized in terms of its hardening behaviour and failure criteria. In this study, a TRIP-aided DP steel (DH780) has been tensile tested in three different deformation conditions (uniaxial, plane stress and shear) and the parameters of its hardening model (Hollomon) and failure criteria (Modified Mohr-Coulomb) have been determined. According to the simulation results, obtained hardening parameters are able to describe the flow behaviour of the steel and the used failure criterion is able to predict the experimental failure correctly in each deformation condition.
Destekleyen Kurum
TUBITAK
Teşekkür
This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 222M321). The authors would like to thank TUBITAK for the financial support given to the project.
Kaynakça
- [1] T. Altan and A. E. Tekkaya, Sheet Metal Forming. Ohio, United States: ASM International, 2012, pp. 1-201.
- [2] J. Hu, Z. Marciniak, and J. Duncan, Mechanics of sheet metal forming. Oxford, United Kingdom: Elsevier, 2002, pp. 1-204.
- [3] H. S. S. Aljibori and A. M. Hamouda, "Finite element analysis of sheet metal forming process," European Journal of Scientific Research, vol. 33, no. 1, pp. 57-59, 2009.
- [4] N. Şen, T. Civek, Ö. İlhan, Ö. Erdem Yurt, M. H. Çetin, and H. Şimşir, "Prediction of Flow Behavior and Deformation Analysis of AA5754 Sheet Metal at Warm and Hot Temperatures", J. Mater. Eng. Perform., pp. 1–12, 2023.
- [5] M. Joun, I. Choi, J. Eom, and M. Lee, "Finite element analysis of tensile testing with emphasis on necking", Comput. Mater. Sci., vol. 41, no. 1, pp. 63–69, 2007.
- [6] B. M. Chaparro, M. C. Oliveira, J. L. Alves, and L. F. Menezes, "Work hardening models and the numerical simulation of the deep drawing process", Materials Science Forum, vol. 455, pp. 717–722, 2004.
- [7] W. Jia, S. Xu, Q. Le, L. Fu, L. Ma, and Y. Tang, "Modified Fields–Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation", Mater. Des., vol. 106, pp. 120–132, 2016.
- [8] J. Shen, L. Hu, Y. Sun, Z. Wan, X. Feng, and Y. Ning, "A comparative study on artificial neural network, phenomenological-based constitutive and modified Fields–Backofen models to predict flow stress in Ti-4Al-3V-2Mo-2Fe alloy", J. Mater. Eng. Perform., vol. 28, pp. 4302–4315, 2019.
- [9] H. Zhang, C. Xu, T. Gao, X. Li, and H. Song, "Identification of strain hardening behaviors in titanium alloys using tension tests and inverse finite element method", J. Mech. Sci. Technol., vol. 37, no. 7, pp. 3593–3599, 2023.
- [10] J.-H. Kim, A. Serpantié, F. Barlat, F. Pierron, and M.-G. Lee, "Characterization of the post-necking strain hardening behavior using the virtual fields method", Int. J. Solids Struct., vol. 50, no. 24, pp. 3829–3842, 2013.
- [11] G. Rousselier, F. Barlat, and J. W. Yoon, "A novel approach for anisotropic hardening modeling. Part I: Theory and its application to finite element analysis of deep drawing", Int. J. Plast., vol. 25, no. 12, pp. 2383–2409, 2009.
- [12] Y. Zhang, Y. Duan, P. Fu, S. Qi, and J. Zhao, "Constitutive modeling based on non-associated flow rule for anisotropic sheet metals forming", Mater. Today Commun., p. 107086, 2023.
- [13] K. Gök, H. Taş, A. Gök, and M. A. Alkan, "Investıgatıon usıng fınıte element analysıs of effect to earrıng of anısotropy parameters ın deep drawıng process", Int. J. Mod. Manuf. Technol., vol. 15, no. 1, 2023.
- [14] P. Fu et al., "Finite element simulation and experimental study of non-blank holder forward and backward composite deep drawing earing test", Int. J. Adv. Manuf. Technol., pp. 1–16, 2023.
- [15] A. Sanrutsadakorn, W. Lawong, and W. Julsri, "Numerical Study of Predicting Forming Process Based on Different Hardening Models in Advanced High Strength Steel Sheets", Key Eng. Mater., vol. 951, pp. 21–32, 2023.
- [16] M. U. Sikandar and M. Usama, "A Case Study in Deep Drawing Process: Numerical Simulation and Analysis of Material Behavior and Hardening Models", Young, vol. 7, pp. 10–19.
- [17] A. Rouzbeh, R. Hashemi, and M. Sedighi, "Experimental and numerical study of microstructure, mechanical characteristics, and forming limit curve for Al 1050/Mg-AZ31B two-layer sheets manufactured via roll bonding technique", J. Alloys Compd., vol. 942, p. 169059, 2023.
- [18] M. Habibi, R. Hashemi, A. Ghazanfari, R. Naghdabadi, and A. Assempour, "Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 232, no. 8, pp. 625–636, 2018.
- [19] M. Habibi, A. Ghazanfari, A. Assempour, R. Naghdabadi, and R. Hashemi, "Determination of forming limit diagram using two modified finite element models", Mech Eng, vol. 48, no. 4, pp. 141–144, 2017.
- [20] T. Pepelnjak and K. Kuzman, "Numerical determination of the forming limit diagrams", J. Achiev. Mater. Manuf. Eng., vol. 20, no. 1–2, pp. 375–378, 2007.
- [21] K. Achineethongkham and V. Uthaisangsuk, "Analysis of forming limit behaviour of high strength steels under non-linear strain paths using a micromechanics damage modelling", Int. J. Mech. Sci., vol. 183, p. 105828, 2020.
- [22] S. K. Paul, "Theoretical analysis of strain- and stress-based forming limit diagrams", J. Strain Anal. Eng. Des., vol. 48, no. 3, pp. 177–188, 2013, doi: 10.1177/0309324712468524.
- [23] C. H. M. Simha, R. Grantab, and M. J. Worswick, "Computational analysis of stress-based forming limit curves", Int. J. Solids Struct., vol. 44, no. 25–26, pp. 8663–8684, 2007.
- [24] P. F. Liu and J. Y. Zheng, "Recent developments on damage modeling and finite element analysis for composite laminates: A review", Mater. Des., vol. 31, no. 8, pp. 3825–3834, 2010.
- [25] C. Y. Tang, J. P. Fan, and T. C. Lee, "Simulation of necking using a damage coupled finite element method", J. Mater. Process. Technol., vol. 139, no. 1–3, pp. 510–513, 2003.
- [26] P.-O. Bouchard, L. Bourgeon, S. Fayolle, and K. Mocellin, "An enhanced Lemaitre model formulation for materials processing damage computation", Int. J. Mater. Form., vol. 4, pp. 299–315, 2011.
- [27] M. E. Korkmaz, "Verification of Johnson-Cook parameters of ferritic stainless steel by drilling process: experimental and finite element simulations", J. Mater. Res. Technol., vol. 9, no. 3, pp. 6322–6330, 2020.
- [28] H. Talebi-Ghadikolaee, H. Moslemi Naeini, M. J. Mirnia, M. A. Mirzai, S. Alexandrov, and H. Gorji, "Experimental and numerical investigation of failure during bending of AA6061 aluminum alloy sheet using the modified Mohr-Coulomb fracture criterion", Int. J. Adv. Manuf. Technol., vol. 105, pp. 5217–5237, 2019.
- [29] M. B. Gorji and D. Mohr, "Predicting shear fracture of aluminum 6016-T4 during deep drawing: Combining Yld-2000 plasticity with Hosford–Coulomb fracture model", Int. J. Mech. Sci., vol. 137, pp. 105–120, 2018.
- [30] A. Kumar, A. K. Singh, A. Shrivastava, S. Mishra, and K. Narasimhan, "Shear modified Lemaitre damage model for fracture prediction during incremental sheet forming", Int. J. Solids Struct., vol. 252, p. 111822, 2022.
- [31] G. Fang, P. Zeng, and L. Lou, "Finite element simulation of the effect of clearance on the forming quality in the blanking process", J. Mater. Process. Technol., vol. 122, no. 2–3, pp. 249–254, 2002.
- [32] M. M. Shahzamanian and P. D. Wu, "Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in MK method", Int. J. Mater. Form., vol. 14, pp. 1031–1041, 2021.
- [33] Z. Hu, K. Wang, and J. Guo, "Microstructure and mechanical property of a novel hot dip galvanized dual phase steel with high ductility",in Journal of Physics: Conference Series, vol. 2368, no. 1, pp. 12021, 2022.
- [34] SSAB, (2023,12,21) Docol 800DH Data Sheet [Online]. Available: https://www.ssab.com
- [35] K. Danas and P. Ponte Castañeda, "Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials", Int. J. Solids Struct., vol. 49, no. 11–12, pp. 1325–1342, 2012.
- [36] Y. Bao, "Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios", Eng. Fract. Mech., vol. 72, no. 4, pp. 505–522, 2005.
- [37] T. Güzelderen, "Investıgatıon of varıatıon of trıaxıalty and lode angle parameter values ın sheet metal formıng processes", M.S. thesis, Mechanical Engineering, Middle East Technical University, Ankara, Turkiye, 2022.
DH780 Çeliği için Modifiye Edilmiş Mohr-Coulomb Hasar Model Parametrelerinin Belirlenmesi
Yıl 2023,
, 2309 - 2320, 29.12.2023
Tolgahan Civek
,
Nuri Şen
,
Oktay Elkoca
Öz
Sac metal malzemelerin şekillendirilmesinde uygulanılan prosesler sırasında karşılaşılan çeşitli hata veya kusurlar üretim maliyetini ciddi seviyelerde arttırmaktadır. Metal şekillendirme prosesinin sonlu elemanlar aracılığı ile önceden analiz edilmesi, üretimde deneme yanılma sayılarını ciddi oranda azaltıp, üretim maliyetinin önemli bir seviyede düşmesine yardımcı olmaktadır. Bu bağlamda, sonlu elemanlar analizlerinde deneysel sonuçlara yakınsamanın sağlanması için analizlerde malzemenin plastik davranışını tanımlayan akış modelinin ve aynı zamanda hasar tespiti için yararlanılan hasar modellerinin doğru bir şekilde tanımlanması ve parametrelerinin optimize edilmesi gerekmektedir. Bu çalışmada DH780 çelik malzeme için üç farklı deformasyon durumundaki (Kesme, tek eksenli çekme ve saf gerinim) numuneler çekme testine tabii tutulmuştur. Elde edilen verilerden yararlanılarak, Hollomon sertleşme modelinin ve modifiye edilmiş Mohr Coloumb hasar modellerinin parametreleri belirlenmiş ve optimize edilmiştir. Analiz ortamında yapılan çekme testlerinin sonuçları deneysel verilerle karşılaştırıldığında sonuçlar arasında yüksek oranda bir uyumun sağlandığı gözlemlenmiştir.
Destekleyen Kurum
TUBITAK
Kaynakça
- [1] T. Altan and A. E. Tekkaya, Sheet Metal Forming. Ohio, United States: ASM International, 2012, pp. 1-201.
- [2] J. Hu, Z. Marciniak, and J. Duncan, Mechanics of sheet metal forming. Oxford, United Kingdom: Elsevier, 2002, pp. 1-204.
- [3] H. S. S. Aljibori and A. M. Hamouda, "Finite element analysis of sheet metal forming process," European Journal of Scientific Research, vol. 33, no. 1, pp. 57-59, 2009.
- [4] N. Şen, T. Civek, Ö. İlhan, Ö. Erdem Yurt, M. H. Çetin, and H. Şimşir, "Prediction of Flow Behavior and Deformation Analysis of AA5754 Sheet Metal at Warm and Hot Temperatures", J. Mater. Eng. Perform., pp. 1–12, 2023.
- [5] M. Joun, I. Choi, J. Eom, and M. Lee, "Finite element analysis of tensile testing with emphasis on necking", Comput. Mater. Sci., vol. 41, no. 1, pp. 63–69, 2007.
- [6] B. M. Chaparro, M. C. Oliveira, J. L. Alves, and L. F. Menezes, "Work hardening models and the numerical simulation of the deep drawing process", Materials Science Forum, vol. 455, pp. 717–722, 2004.
- [7] W. Jia, S. Xu, Q. Le, L. Fu, L. Ma, and Y. Tang, "Modified Fields–Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation", Mater. Des., vol. 106, pp. 120–132, 2016.
- [8] J. Shen, L. Hu, Y. Sun, Z. Wan, X. Feng, and Y. Ning, "A comparative study on artificial neural network, phenomenological-based constitutive and modified Fields–Backofen models to predict flow stress in Ti-4Al-3V-2Mo-2Fe alloy", J. Mater. Eng. Perform., vol. 28, pp. 4302–4315, 2019.
- [9] H. Zhang, C. Xu, T. Gao, X. Li, and H. Song, "Identification of strain hardening behaviors in titanium alloys using tension tests and inverse finite element method", J. Mech. Sci. Technol., vol. 37, no. 7, pp. 3593–3599, 2023.
- [10] J.-H. Kim, A. Serpantié, F. Barlat, F. Pierron, and M.-G. Lee, "Characterization of the post-necking strain hardening behavior using the virtual fields method", Int. J. Solids Struct., vol. 50, no. 24, pp. 3829–3842, 2013.
- [11] G. Rousselier, F. Barlat, and J. W. Yoon, "A novel approach for anisotropic hardening modeling. Part I: Theory and its application to finite element analysis of deep drawing", Int. J. Plast., vol. 25, no. 12, pp. 2383–2409, 2009.
- [12] Y. Zhang, Y. Duan, P. Fu, S. Qi, and J. Zhao, "Constitutive modeling based on non-associated flow rule for anisotropic sheet metals forming", Mater. Today Commun., p. 107086, 2023.
- [13] K. Gök, H. Taş, A. Gök, and M. A. Alkan, "Investıgatıon usıng fınıte element analysıs of effect to earrıng of anısotropy parameters ın deep drawıng process", Int. J. Mod. Manuf. Technol., vol. 15, no. 1, 2023.
- [14] P. Fu et al., "Finite element simulation and experimental study of non-blank holder forward and backward composite deep drawing earing test", Int. J. Adv. Manuf. Technol., pp. 1–16, 2023.
- [15] A. Sanrutsadakorn, W. Lawong, and W. Julsri, "Numerical Study of Predicting Forming Process Based on Different Hardening Models in Advanced High Strength Steel Sheets", Key Eng. Mater., vol. 951, pp. 21–32, 2023.
- [16] M. U. Sikandar and M. Usama, "A Case Study in Deep Drawing Process: Numerical Simulation and Analysis of Material Behavior and Hardening Models", Young, vol. 7, pp. 10–19.
- [17] A. Rouzbeh, R. Hashemi, and M. Sedighi, "Experimental and numerical study of microstructure, mechanical characteristics, and forming limit curve for Al 1050/Mg-AZ31B two-layer sheets manufactured via roll bonding technique", J. Alloys Compd., vol. 942, p. 169059, 2023.
- [18] M. Habibi, R. Hashemi, A. Ghazanfari, R. Naghdabadi, and A. Assempour, "Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 232, no. 8, pp. 625–636, 2018.
- [19] M. Habibi, A. Ghazanfari, A. Assempour, R. Naghdabadi, and R. Hashemi, "Determination of forming limit diagram using two modified finite element models", Mech Eng, vol. 48, no. 4, pp. 141–144, 2017.
- [20] T. Pepelnjak and K. Kuzman, "Numerical determination of the forming limit diagrams", J. Achiev. Mater. Manuf. Eng., vol. 20, no. 1–2, pp. 375–378, 2007.
- [21] K. Achineethongkham and V. Uthaisangsuk, "Analysis of forming limit behaviour of high strength steels under non-linear strain paths using a micromechanics damage modelling", Int. J. Mech. Sci., vol. 183, p. 105828, 2020.
- [22] S. K. Paul, "Theoretical analysis of strain- and stress-based forming limit diagrams", J. Strain Anal. Eng. Des., vol. 48, no. 3, pp. 177–188, 2013, doi: 10.1177/0309324712468524.
- [23] C. H. M. Simha, R. Grantab, and M. J. Worswick, "Computational analysis of stress-based forming limit curves", Int. J. Solids Struct., vol. 44, no. 25–26, pp. 8663–8684, 2007.
- [24] P. F. Liu and J. Y. Zheng, "Recent developments on damage modeling and finite element analysis for composite laminates: A review", Mater. Des., vol. 31, no. 8, pp. 3825–3834, 2010.
- [25] C. Y. Tang, J. P. Fan, and T. C. Lee, "Simulation of necking using a damage coupled finite element method", J. Mater. Process. Technol., vol. 139, no. 1–3, pp. 510–513, 2003.
- [26] P.-O. Bouchard, L. Bourgeon, S. Fayolle, and K. Mocellin, "An enhanced Lemaitre model formulation for materials processing damage computation", Int. J. Mater. Form., vol. 4, pp. 299–315, 2011.
- [27] M. E. Korkmaz, "Verification of Johnson-Cook parameters of ferritic stainless steel by drilling process: experimental and finite element simulations", J. Mater. Res. Technol., vol. 9, no. 3, pp. 6322–6330, 2020.
- [28] H. Talebi-Ghadikolaee, H. Moslemi Naeini, M. J. Mirnia, M. A. Mirzai, S. Alexandrov, and H. Gorji, "Experimental and numerical investigation of failure during bending of AA6061 aluminum alloy sheet using the modified Mohr-Coulomb fracture criterion", Int. J. Adv. Manuf. Technol., vol. 105, pp. 5217–5237, 2019.
- [29] M. B. Gorji and D. Mohr, "Predicting shear fracture of aluminum 6016-T4 during deep drawing: Combining Yld-2000 plasticity with Hosford–Coulomb fracture model", Int. J. Mech. Sci., vol. 137, pp. 105–120, 2018.
- [30] A. Kumar, A. K. Singh, A. Shrivastava, S. Mishra, and K. Narasimhan, "Shear modified Lemaitre damage model for fracture prediction during incremental sheet forming", Int. J. Solids Struct., vol. 252, p. 111822, 2022.
- [31] G. Fang, P. Zeng, and L. Lou, "Finite element simulation of the effect of clearance on the forming quality in the blanking process", J. Mater. Process. Technol., vol. 122, no. 2–3, pp. 249–254, 2002.
- [32] M. M. Shahzamanian and P. D. Wu, "Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in MK method", Int. J. Mater. Form., vol. 14, pp. 1031–1041, 2021.
- [33] Z. Hu, K. Wang, and J. Guo, "Microstructure and mechanical property of a novel hot dip galvanized dual phase steel with high ductility",in Journal of Physics: Conference Series, vol. 2368, no. 1, pp. 12021, 2022.
- [34] SSAB, (2023,12,21) Docol 800DH Data Sheet [Online]. Available: https://www.ssab.com
- [35] K. Danas and P. Ponte Castañeda, "Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials", Int. J. Solids Struct., vol. 49, no. 11–12, pp. 1325–1342, 2012.
- [36] Y. Bao, "Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios", Eng. Fract. Mech., vol. 72, no. 4, pp. 505–522, 2005.
- [37] T. Güzelderen, "Investıgatıon of varıatıon of trıaxıalty and lode angle parameter values ın sheet metal formıng processes", M.S. thesis, Mechanical Engineering, Middle East Technical University, Ankara, Turkiye, 2022.