Araştırma Makalesi
BibTex RIS Kaynak Göster

Dopaminin Elektrokimyasal Tayini için Bazı Taç Eter Bileşiklerinin Kullanımının Araştırılması

Yıl 2024, , 2185 - 2199, 23.10.2024
https://doi.org/10.29130/dubited.1463687

Öz

Bu çalışmada çok duvarlı karbon nanotüp (MWCNT) modifiye edilmiş camsı karbon elektrot (GCE) yüzeylerine farklı taç eter bileşiklerinin (CE1, CE2 ve CE3) elektropolimerizasyonu ile hazırlanan üç farklı taç eter-modifiye elektrodun elektrokimyasal dopamin tayininde kullanımı araştırıldı. Taç eterlerin elektropolimerizasyonu sırasındaki döngü sayısı ve çalışılan tampon çözelti pH’sı optimize edildi. Optimum koşullarda, MWCNT modifiye edilmiş GCE ile taç eter-MWCNT-modifiye elektrotların 4,0×10-6 − 5,7×10-4 M dopamin derişimi aralığında duyarlılıkları belirlendi. MWCNT/GCE’nin duyarlılığı 6,71 µA mM-1 olarak bulunurken, CE1/MWCNT/GCE, CE2/MWCNT/GCE ve CE3/MWCNT/GCE’nin duyarlılıkları sırasıyla 19,53; 16,32 ve 20,80 µA mM-1 olarak belirlendi. Taç eter-modifiye elektrotların gözlenebilme sınırı, tayin sınırı, tekrar kullanılabilirlik ve tekrar üretilebilirlik gibi performans özellikleri de incelendi. Çalışma, taç eter bileşiklerinin dopamin tayininde elektrokimyasal cevabı önemli ölçüde arttırdığını ve dopamin tayinine olumlu yönde etki ettiğini gösterdi.

Destekleyen Kurum

Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

KBÜBAP-24-DS-039

Teşekkür

Bu çalışma Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Proje Numarası: KBÜBAP-24-DS-039

Kaynakça

  • [1] J. M. Lehn, “Supramolecular Chemistry,” Science, vol. 260, no. 5115, pp. 1762–1763, Jun. 1993, doi: 10.1126/science.8511582.
  • [2] H. Che and J. Yuan, “Recent advances in electrospinning supramolecular systems,” Journal of Materials Chemistry B, vol. 10, no. 1, pp. 8–19, 2022, doi: 10.1039/D1TB02304G.
  • [3] A. Müller, H. Reuter, and S. Dillinger, “Supramolecular Inorganic Chemistry: Small Guests in Small and Large Hosts,” Angewandte Chemie International Edition in English, vol. 34, no. 21, pp. 2328–2361, 1995, doi: 10.1002/anie.199523281.
  • [4] C. J. Pedersen, “Cyclic polyethers and their complexes with metal salts,” Journal of the American Chemical Society, vol. 89, no. 10, pp. 2495–2496, May 1967, doi: 10.1021/ja00986a052.
  • [5] C. J. Pedersen and H. K. Frensdorff, “Macrocyclic Polyethers and Their Complexes,” Angewandte Chemie International Edition in English, vol. 11, no. 1, pp. 16–25, 1972, doi: 10.1002/anie.197200161.
  • [6] N. F. Atta, A. Galal, and Y. M. Ahmed, “Highly Conductive Crown Ether/Ionic Liquid Crystal-Carbon Nanotubes Composite Based Electrochemical Sensor for Chiral Recognition of Tyrosine Enantiomers,” Journal of The Electrochemical Society, vol. 166, no. 8, p. B623, May 2019, doi: 10.1149/2.0771908jes.
  • [7] S. Koçoğlu, Z. Hayvalı, and H. Ogutcu, “A polydentate ligand based on 2,2’-dipyridylamine unit linked benzo-15-crown-5; alkali and transition metal complexes; photoresponsive ligand; antimicrobial evaluation against pathogenic microorganisms,” Transition Metal Chemistry, vol. 46, no. 7, pp. 509–522, Oct. 2021, doi: 10.1007/s11243-021-00469-1.
  • [8] L. Chen et al., “High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber,” Journal of Chromatography A, vol. 1561, pp. 48–55, Aug. 2018, doi: 10.1016/j.chroma.2018.05.041.
  • [9] N. F. Atta, Y. M. Ahmed, and A. Galal, “Electrochemical Determination of Neurotransmitters at Crown Ether Modified Carbon Nanotube Composite: Application for Sub-nano-sensing of Serotonin in Human Serum,” Electroanalysis, vol. 31, no. 7, pp. 1204–1214, 2019, doi: 10.1002/elan.201800065.
  • [10] N. F. Atta, A. Galal, and A. R. El-Gohary, “Crown ether modified poly(hydroquinone)/carbon nanotubes based electrochemical sensor for simultaneous determination of levodopa, uric acid, tyrosine and ascorbic acid in biological fluids,” Journal of Electroanalytical Chemistry, vol. 863, p. 114032, Apr. 2020, doi: 10.1016/j.jelechem.2020.114032.
  • [11] L. Chen, X. Zhu, D. Huang, Z. Xu, J. Shen, and W. Zhang, “Polystyrene/poly(dibenzo-18-crown-6) composite nanofibers for the selective adsorption of plasma catecholamines,” RSC Advances, vol. 7, no. 22, pp. 13263–13271, 2017, doi: 10.1039/C7RA00430C.
  • [12] L. Chen, X. Zhu, J. Shen, and W. Zhang, “Selective solid-phase extraction of catecholamines from plasma using nanofibers doped with crown ether and their quantitation by HPLC with electrochemical detection,” Analytical and Bioanalytical Chemistry, vol. 408, no. 18, pp. 4987–4994, Jul. 2016, doi: 10.1007/s00216-016-9596-7.
  • [13] H. Beitollahi, M. Safaei, and S. Tajik, “Different Electrochemical Sensors for Determination of Dopamine as Neurotransmitter in Mixed and Clinical Samples: A Review,” Analytical and Bioanalytical Chemistry Research, vol. 6, no. 1, pp. 81–96, Jun. 2019, doi: 10.22036/abcr.2018.142219.1229.
  • [14] Q. Huang, X. Lin, L. Tong, and Q.-X. Tong, “Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 3, pp. 1644–1650, Jan. 2020, doi: 10.1021/acssuschemeng.9b06623.
  • [15] K. Jackowska and P. Krysinski, “New trends in the electrochemical sensing of dopamine,” Analytical and Bioanalytical Chemistry, vol. 405, no. 11, pp. 3753–3771, Apr. 2013, doi: 10.1007/s00216-012-6578-2.
  • [16] S. M. Siddeeg, “Electrochemical detection of neurotransmitter dopamine: a review,” International Journal of Electrochemical Science, vol. 15, no. 1, pp. 599–612, Jan. 2020, doi: 10.20964/2020.01.61.
  • [17] I. R. Suhito, N. Angeline, and T.-H. Kim, “Nanomaterial-modified Hybrid Platforms for Precise Electrochemical Detection of Dopamine,” BioChip Journal, vol. 13, no. 1, pp. 20–29, Mar. 2019, doi: 10.1007/s13206-019-3106-x.
  • [18] N. Yusoff, A. Pandikumar, R. Ramaraj, H. N. Lim, and N. M. Huang, “Gold nanoparticle based optical and electrochemical sensing of dopamine,” Microchimica Acta, vol. 182, no. 13, pp. 2091–2114, Oct. 2015, doi: 10.1007/s00604-015-1609-2.
  • [19] F. B. Kamal Eddin and Y. Wing Fen, “Recent Advances in Electrochemical and Optical Sensing of Dopamine,” Sensors, vol. 20, no. 4, Art. no. 4, Jan. 2020, doi: 10.3390/s20041039.
  • [20] S. K. Revanappa, I. Soni, M. Siddalinganahalli, G. K. Jayaprakash, R. Flores-Moreno, and C. Bananakere Nanjegowda, “A Fukui Analysis of an Arginine-Modified Carbon Surface for the Electrochemical Sensing of Dopamine,” Materials, vol. 15, no. 18, Art. no. 18, Jan. 2022, doi: 10.3390/ma15186337.
  • [21] J. Chen, Y.-P. Shi, and J.-Y. Liu, “Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography,” Journal of Chromatography A, vol. 1003, no. 1, pp. 127–132, Jun. 2003, doi: 10.1016/S0021-9673(03)00786-6.
  • [22] N. O. A. Al-Salahi, E. Y. Hashem, and D. A. Abdel-Kader, “Spectrophotometric Methods for Determination of Dopamine Hydrochloride in Bulk and in Injectable Forms,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 278, p. 121278, Oct. 2022, doi: 10.1016/j.saa.2022.121278.
  • [23] Y. H. Park, X. Zhang, S. S. Rubakhin, and J. V. Sweedler, “Independent Optimization of Capillary Electrophoresis Separation and Native Fluorescence Detection Conditions for Indolamine and Catecholamine Measurements,” Analytical Chemistry, vol. 71, no. 21, pp. 4997–5002, Nov. 1999, doi: 10.1021/ac990659r.
  • [24] H. Y. Wang, Y. Sun, and B. Tang, “Study on fluorescence property of dopamine and determination of dopamine by fluorimetry,” Talanta, vol. 57, no. 5, pp. 899–907, Jul. 2002, doi: 10.1016/S0039-9140(02)00123-6.
  • [25] H. Duan, L. Li, X. Wang, Y. Wang, J. Li, and C. Luo, “A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 139, pp. 374–379, Mar. 2015, doi: 10.1016/j.saa.2014.12.051.
  • [26] H. A. M. S. A. Yashıl and İ. Okman Koçoğlu, “Amperometric dopamine sensor based on carbon nanofiber, Fe3O4 nanoparticles, and silver nanoparticles modified glassy carbon electrode,” Monatshefte für Chemie-Chemical Monthly, vol. 155, no. 7, pp. 663–672, Jul. 2024, doi: 10.1007/s00706-024-03219-y.
  • [27] S. Lakard, I.-A. Pavel, and B. Lakard, “Electrochemical Biosensing of Dopamine Neurotransmitter: A Review,” Biosensors, vol. 11, no. 6, Art. no. 6, Jun. 2021, doi: 10.3390/bios11060179.
  • [28] M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. S. Jillani, and C. Basheer, “Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review,” TrAC Trends in Analytical Chemistry, vol. 76, pp. 15–29, Feb. 2016, doi: 10.1016/j.trac.2015.09.006.
  • [29] Q. Gong, H. Han, Y. Wang, C. Yao, H. Yang, and J. Qiao, “An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite,” New Carbon Materials, vol. 35, no. 1, pp. 34–41, Feb. 2020, doi: 10.1016/S1872-5805(20)60473-5.
  • [30] S. Umapathi, J. Masud, H. Coleman, and M. Nath, “Electrochemical sensor based on CuSe for determination of dopamine,” Microchimica Acta, vol. 187, no. 8, p. 440, Jul. 2020, doi: 10.1007/s00604-020-04405-5.
  • [31] H. Yang, C. Zhou, J. An, L. Yang, Y. Yang, and X. Liu, “Ultra-fast synthesis of iron decorated multiwalled carbon nanotube composite materials: A sensitive electrochemical sensor for determining dopamine,” Journal of Alloys and Compounds, vol. 897, p. 163257, Mar. 2022, doi: 10.1016/j.jallcom.2021.163257.
  • [32] P. Paulraj et al., “Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine,” Electrochimica Acta, vol. 363, p. 137158, Dec. 2020, doi: 10.1016/j.electacta.2020.137158.
  • [33] L. N. Rizalputri et al., “Facile and controllable synthesis of monodisperse gold nanoparticle bipyramid for electrochemical dopamine sensor,” Nanotechnology, vol. 34, no. 5, p. 055502, Nov. 2022, doi: 10.1088/1361-6528/ac9d3f.
  • [34] N. Sofia Anuar, W. Jeffrey Basirun, M. Shalauddin, and S. Akhter, “A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode,” RSC Advances, vol. 10, no. 29, pp. 17336–17344, 2020, doi: 10.1039/C9RA11056A.
  • [35] S. E. Elugoke, O. E. Fayemi, A. S. Adekunle, B. B. Mamba, T. T. I. Nkambule, and E. E. Ebenso, “Electrochemical sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modified electrode,” FlatChem, vol. 33, p. 100372, May 2022, doi: 10.1016/j.flatc.2022.100372.
  • [36] S. Paramparambath et al., “Nonenzymatic Electrochemical Sensor Based on CuO-MgO Composite for Dopamine Detection,” IEEE Sensors Journal, vol. 21, no. 22, pp. 25597–25605, Nov. 2021, doi: 10.1109/JSEN.2021.3112009.
  • [37] Z. A. Alothman, N. Bukhari, S. M. Wabaidur, and S. Haider, “Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 314–320, Apr. 2010, doi: 10.1016/j.snb.2010.02.024.
  • [38] B. Rezaei, A. M. Shoushtari, M. Rabiee, L. Uzun, W. C. Mak, and A. P. F. Turner, “An electrochemical immunosensor for cardiac Troponin I using electrospun carboxylated multi-walled carbon nanotube-whiskered nanofibres,” Talanta, vol. 182, pp. 178–186, May 2018, doi: 10.1016/j.talanta.2018.01.046.
  • [39] G. C. Zhao, L. Zhang, X.-W. Wei, and Z.-S. Yang, “Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis,” Electrochemistry Communications, vol. 5, no. 9, pp. 825–829, Sep. 2003, doi: 10.1016/j.elecom.2003.07.006.
  • [40] P. Y. Chen, R. Vittal, P.-C. Nien, and K.-C. Ho, “Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion®,” Biosensors and Bioelectronics, vol. 24, no. 12, pp. 3504–3509, Aug. 2009, doi: 10.1016/j.bios.2009.05.003.
  • [41] H. Wang, S. Yao, Y. Liu, S. Wei, J. Su, and G. Hu, “Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs,” Biosensors and Bioelectronics, vol. 87, pp. 417–421, Jan. 2017, doi: 10.1016/j.bios.2016.08.092.
  • [42] P. B. Desai, R. M. Kotkar, and A. K. Srivastava, “Electrochemical behaviour of pyridoxine hydrochloride (vitamin B6) at carbon paste electrode modified with crown ethers,” Journal of Solid State Electrochemistry, vol. 12, no. 9, pp. 1067–1075, Sep. 2008, doi: 10.1007/s10008-007-0435-9.
  • [43] R. M. Kotkar, P. B. Desai, and A. K. Srivastava, “Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes,” Sensors and Actuators B: Chemical, vol. 124, no. 1, pp. 90–98, Jun. 2007, doi: 10.1016/j.snb.2006.12.004.
  • [44] G. Rounaghi, R. M. kakhki, and H. Azizi-toupkanloo, “Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles,” Materials Science and Engineering: C, vol. 32, no. 2, pp. 172–177, Mar. 2012, doi: 10.1016/j.msec.2011.10.014.
  • [45] N. Serrano, A. González-Calabuig, and M. del Valle, “Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd(II), Pb(II) and Cu(II),” Talanta, vol. 138, pp. 130–137, Jun. 2015, doi: 10.1016/j.talanta.2015.01.044.
  • [46] M. L. Colombo, S. McNeil, N. Iwai, A. Chang, and M. Shen, “Electrochemical Detection of Dopamine via Assisted Ion Transfer at Nanopipet Electrode Using Cyclic Voltammetry,” Journal of The Electrochemical Society, vol. 163, no. 4, p. H3072, Dec. 2015, doi: 10.1149/2.0091604jes.
  • [47] S. Koçoğlu, Z. Hayvalı, H. Ogutcu, and O. Atakol, “Synthesis, antimicrobial and thermal studies of nitropyridine-substituted double armed benzo-15-crown-5 ligands; alkali (Na+ and K+) and transition metal (Ag+) complexes; reduction of nitro compounds,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 102, no. 9, pp. 763–780, Oct. 2022, doi: 10.1007/s10847-022-01157-y.
  • [48] S. Koçoğlu, H. Ogutcu, and Z. Hayvalı, “Photophysical and antimicrobial properties of new double-armed benzo-15-crown-5 ligands and complexes,” Research on Chemical Intermediates, vol. 45, no. 4, pp. 2403–2427, Apr. 2019, doi: 10.1007/s11164-019-03741-3.
  • [49] A. E. F. Oliveira, G. B. Bettio, and A. C. Pereira, “Optimization of an Electrochemical Sensor for Determination of Imidacloprid Based on β-cyclodextrin Electropolymerization on Glassy Carbon Electrode,” Electroanalysis, vol. 30, no. 9, pp. 1929–1937, 2018, doi: 10.1002/elan.201800235.
  • [50] İ. Okman Koçoğlu, P. E. Erden, and E. Kılıç, “Disposable biosensor based on ionic liquid, carbon nanofiber and poly(glutamic acid) for tyramine determination,” Analytical Biochemistry, vol. 684, p. 115387, Jan. 2024, doi: 10.1016/j.ab.2023.115387.
  • [51] Y. H. Chang, P. M. Woi, and Y. Alias, “Optimization parameters for electropolymerization of melamine in deep eutectic solvent,” Malaysian Journal of Analytical Sciences, vol. 26, no. 2, pp. 202–214, 2022.
  • [52] J. Ahmed, M. Faisal, F. A. Harraz, M. Jalalah, and S. A. Alsareii, “Development of an amperometric biosensor for dopamine using novel mesoporous silicon nanoparticles fabricated via a facile stain etching approach,” Physica E: Low-dimensional Systems and Nanostructures, vol. 135, p. 114952, Jan. 2022, doi: 10.1016/j.physe.2021.114952.
  • [53] E. Wudarska, E. Chrzescijanska, E. Kusmierek, and J. Rynkowski, “Electrochemical Behavior of 2-(p-isobutylphenyl)propionic Acid at Platinum Electrode,” International Journal of Electrochemical Science, vol. 10, no. 11, pp. 9433–9442, Nov. 2015, doi: 10.1016/S1452-3981(23)11191-6.

Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine

Yıl 2024, , 2185 - 2199, 23.10.2024
https://doi.org/10.29130/dubited.1463687

Öz

In this study, the use of three different crown ether-modified electrodes prepared by electropolymerization of different crown ether compounds (CE1, CE2 and CE3) on multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) surfaces was investigated for electrochemical dopamine determination. The number of cycles during the electropolymerization of crown ethers and the pH of the buffer solution were optimized. Under optimum conditions, the sensitivities of MWCNT-modified GCE and crown ether-MWCNT-modified electrodes were determined in the range of 4.0×10-6 – 5.7×10-4 M dopamine. The sensitivity of MWCNT/GCE was found to be 6.71 µA mM-1, while the sensitivities of CE1/MWCNT/GCE, CE2/MWCNT/GCE and CE3/MWCNT/GCE were 19.53, 16.32 and 20.80 µA mM-1, respectively. The performance characteristics of the crown ether-MWCNT-modified electrodes such as detection limit, quantification limit, reusability and reproducibility were also investigated. The study showed that crown ether compounds significantly enhanced the electrochemical response in dopamine determination.

Destekleyen Kurum

Karabük University Scientific Research Projects Coordination Unit

Proje Numarası

KBÜBAP-24-DS-039

Teşekkür

This study is supported by Karabük University Scientific Research Projects Coordination Unit. Project Number: KBÜBAP-24-DS-039

Kaynakça

  • [1] J. M. Lehn, “Supramolecular Chemistry,” Science, vol. 260, no. 5115, pp. 1762–1763, Jun. 1993, doi: 10.1126/science.8511582.
  • [2] H. Che and J. Yuan, “Recent advances in electrospinning supramolecular systems,” Journal of Materials Chemistry B, vol. 10, no. 1, pp. 8–19, 2022, doi: 10.1039/D1TB02304G.
  • [3] A. Müller, H. Reuter, and S. Dillinger, “Supramolecular Inorganic Chemistry: Small Guests in Small and Large Hosts,” Angewandte Chemie International Edition in English, vol. 34, no. 21, pp. 2328–2361, 1995, doi: 10.1002/anie.199523281.
  • [4] C. J. Pedersen, “Cyclic polyethers and their complexes with metal salts,” Journal of the American Chemical Society, vol. 89, no. 10, pp. 2495–2496, May 1967, doi: 10.1021/ja00986a052.
  • [5] C. J. Pedersen and H. K. Frensdorff, “Macrocyclic Polyethers and Their Complexes,” Angewandte Chemie International Edition in English, vol. 11, no. 1, pp. 16–25, 1972, doi: 10.1002/anie.197200161.
  • [6] N. F. Atta, A. Galal, and Y. M. Ahmed, “Highly Conductive Crown Ether/Ionic Liquid Crystal-Carbon Nanotubes Composite Based Electrochemical Sensor for Chiral Recognition of Tyrosine Enantiomers,” Journal of The Electrochemical Society, vol. 166, no. 8, p. B623, May 2019, doi: 10.1149/2.0771908jes.
  • [7] S. Koçoğlu, Z. Hayvalı, and H. Ogutcu, “A polydentate ligand based on 2,2’-dipyridylamine unit linked benzo-15-crown-5; alkali and transition metal complexes; photoresponsive ligand; antimicrobial evaluation against pathogenic microorganisms,” Transition Metal Chemistry, vol. 46, no. 7, pp. 509–522, Oct. 2021, doi: 10.1007/s11243-021-00469-1.
  • [8] L. Chen et al., “High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber,” Journal of Chromatography A, vol. 1561, pp. 48–55, Aug. 2018, doi: 10.1016/j.chroma.2018.05.041.
  • [9] N. F. Atta, Y. M. Ahmed, and A. Galal, “Electrochemical Determination of Neurotransmitters at Crown Ether Modified Carbon Nanotube Composite: Application for Sub-nano-sensing of Serotonin in Human Serum,” Electroanalysis, vol. 31, no. 7, pp. 1204–1214, 2019, doi: 10.1002/elan.201800065.
  • [10] N. F. Atta, A. Galal, and A. R. El-Gohary, “Crown ether modified poly(hydroquinone)/carbon nanotubes based electrochemical sensor for simultaneous determination of levodopa, uric acid, tyrosine and ascorbic acid in biological fluids,” Journal of Electroanalytical Chemistry, vol. 863, p. 114032, Apr. 2020, doi: 10.1016/j.jelechem.2020.114032.
  • [11] L. Chen, X. Zhu, D. Huang, Z. Xu, J. Shen, and W. Zhang, “Polystyrene/poly(dibenzo-18-crown-6) composite nanofibers for the selective adsorption of plasma catecholamines,” RSC Advances, vol. 7, no. 22, pp. 13263–13271, 2017, doi: 10.1039/C7RA00430C.
  • [12] L. Chen, X. Zhu, J. Shen, and W. Zhang, “Selective solid-phase extraction of catecholamines from plasma using nanofibers doped with crown ether and their quantitation by HPLC with electrochemical detection,” Analytical and Bioanalytical Chemistry, vol. 408, no. 18, pp. 4987–4994, Jul. 2016, doi: 10.1007/s00216-016-9596-7.
  • [13] H. Beitollahi, M. Safaei, and S. Tajik, “Different Electrochemical Sensors for Determination of Dopamine as Neurotransmitter in Mixed and Clinical Samples: A Review,” Analytical and Bioanalytical Chemistry Research, vol. 6, no. 1, pp. 81–96, Jun. 2019, doi: 10.22036/abcr.2018.142219.1229.
  • [14] Q. Huang, X. Lin, L. Tong, and Q.-X. Tong, “Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 3, pp. 1644–1650, Jan. 2020, doi: 10.1021/acssuschemeng.9b06623.
  • [15] K. Jackowska and P. Krysinski, “New trends in the electrochemical sensing of dopamine,” Analytical and Bioanalytical Chemistry, vol. 405, no. 11, pp. 3753–3771, Apr. 2013, doi: 10.1007/s00216-012-6578-2.
  • [16] S. M. Siddeeg, “Electrochemical detection of neurotransmitter dopamine: a review,” International Journal of Electrochemical Science, vol. 15, no. 1, pp. 599–612, Jan. 2020, doi: 10.20964/2020.01.61.
  • [17] I. R. Suhito, N. Angeline, and T.-H. Kim, “Nanomaterial-modified Hybrid Platforms for Precise Electrochemical Detection of Dopamine,” BioChip Journal, vol. 13, no. 1, pp. 20–29, Mar. 2019, doi: 10.1007/s13206-019-3106-x.
  • [18] N. Yusoff, A. Pandikumar, R. Ramaraj, H. N. Lim, and N. M. Huang, “Gold nanoparticle based optical and electrochemical sensing of dopamine,” Microchimica Acta, vol. 182, no. 13, pp. 2091–2114, Oct. 2015, doi: 10.1007/s00604-015-1609-2.
  • [19] F. B. Kamal Eddin and Y. Wing Fen, “Recent Advances in Electrochemical and Optical Sensing of Dopamine,” Sensors, vol. 20, no. 4, Art. no. 4, Jan. 2020, doi: 10.3390/s20041039.
  • [20] S. K. Revanappa, I. Soni, M. Siddalinganahalli, G. K. Jayaprakash, R. Flores-Moreno, and C. Bananakere Nanjegowda, “A Fukui Analysis of an Arginine-Modified Carbon Surface for the Electrochemical Sensing of Dopamine,” Materials, vol. 15, no. 18, Art. no. 18, Jan. 2022, doi: 10.3390/ma15186337.
  • [21] J. Chen, Y.-P. Shi, and J.-Y. Liu, “Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography,” Journal of Chromatography A, vol. 1003, no. 1, pp. 127–132, Jun. 2003, doi: 10.1016/S0021-9673(03)00786-6.
  • [22] N. O. A. Al-Salahi, E. Y. Hashem, and D. A. Abdel-Kader, “Spectrophotometric Methods for Determination of Dopamine Hydrochloride in Bulk and in Injectable Forms,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 278, p. 121278, Oct. 2022, doi: 10.1016/j.saa.2022.121278.
  • [23] Y. H. Park, X. Zhang, S. S. Rubakhin, and J. V. Sweedler, “Independent Optimization of Capillary Electrophoresis Separation and Native Fluorescence Detection Conditions for Indolamine and Catecholamine Measurements,” Analytical Chemistry, vol. 71, no. 21, pp. 4997–5002, Nov. 1999, doi: 10.1021/ac990659r.
  • [24] H. Y. Wang, Y. Sun, and B. Tang, “Study on fluorescence property of dopamine and determination of dopamine by fluorimetry,” Talanta, vol. 57, no. 5, pp. 899–907, Jul. 2002, doi: 10.1016/S0039-9140(02)00123-6.
  • [25] H. Duan, L. Li, X. Wang, Y. Wang, J. Li, and C. Luo, “A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 139, pp. 374–379, Mar. 2015, doi: 10.1016/j.saa.2014.12.051.
  • [26] H. A. M. S. A. Yashıl and İ. Okman Koçoğlu, “Amperometric dopamine sensor based on carbon nanofiber, Fe3O4 nanoparticles, and silver nanoparticles modified glassy carbon electrode,” Monatshefte für Chemie-Chemical Monthly, vol. 155, no. 7, pp. 663–672, Jul. 2024, doi: 10.1007/s00706-024-03219-y.
  • [27] S. Lakard, I.-A. Pavel, and B. Lakard, “Electrochemical Biosensing of Dopamine Neurotransmitter: A Review,” Biosensors, vol. 11, no. 6, Art. no. 6, Jun. 2021, doi: 10.3390/bios11060179.
  • [28] M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. S. Jillani, and C. Basheer, “Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review,” TrAC Trends in Analytical Chemistry, vol. 76, pp. 15–29, Feb. 2016, doi: 10.1016/j.trac.2015.09.006.
  • [29] Q. Gong, H. Han, Y. Wang, C. Yao, H. Yang, and J. Qiao, “An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite,” New Carbon Materials, vol. 35, no. 1, pp. 34–41, Feb. 2020, doi: 10.1016/S1872-5805(20)60473-5.
  • [30] S. Umapathi, J. Masud, H. Coleman, and M. Nath, “Electrochemical sensor based on CuSe for determination of dopamine,” Microchimica Acta, vol. 187, no. 8, p. 440, Jul. 2020, doi: 10.1007/s00604-020-04405-5.
  • [31] H. Yang, C. Zhou, J. An, L. Yang, Y. Yang, and X. Liu, “Ultra-fast synthesis of iron decorated multiwalled carbon nanotube composite materials: A sensitive electrochemical sensor for determining dopamine,” Journal of Alloys and Compounds, vol. 897, p. 163257, Mar. 2022, doi: 10.1016/j.jallcom.2021.163257.
  • [32] P. Paulraj et al., “Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine,” Electrochimica Acta, vol. 363, p. 137158, Dec. 2020, doi: 10.1016/j.electacta.2020.137158.
  • [33] L. N. Rizalputri et al., “Facile and controllable synthesis of monodisperse gold nanoparticle bipyramid for electrochemical dopamine sensor,” Nanotechnology, vol. 34, no. 5, p. 055502, Nov. 2022, doi: 10.1088/1361-6528/ac9d3f.
  • [34] N. Sofia Anuar, W. Jeffrey Basirun, M. Shalauddin, and S. Akhter, “A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode,” RSC Advances, vol. 10, no. 29, pp. 17336–17344, 2020, doi: 10.1039/C9RA11056A.
  • [35] S. E. Elugoke, O. E. Fayemi, A. S. Adekunle, B. B. Mamba, T. T. I. Nkambule, and E. E. Ebenso, “Electrochemical sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modified electrode,” FlatChem, vol. 33, p. 100372, May 2022, doi: 10.1016/j.flatc.2022.100372.
  • [36] S. Paramparambath et al., “Nonenzymatic Electrochemical Sensor Based on CuO-MgO Composite for Dopamine Detection,” IEEE Sensors Journal, vol. 21, no. 22, pp. 25597–25605, Nov. 2021, doi: 10.1109/JSEN.2021.3112009.
  • [37] Z. A. Alothman, N. Bukhari, S. M. Wabaidur, and S. Haider, “Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 314–320, Apr. 2010, doi: 10.1016/j.snb.2010.02.024.
  • [38] B. Rezaei, A. M. Shoushtari, M. Rabiee, L. Uzun, W. C. Mak, and A. P. F. Turner, “An electrochemical immunosensor for cardiac Troponin I using electrospun carboxylated multi-walled carbon nanotube-whiskered nanofibres,” Talanta, vol. 182, pp. 178–186, May 2018, doi: 10.1016/j.talanta.2018.01.046.
  • [39] G. C. Zhao, L. Zhang, X.-W. Wei, and Z.-S. Yang, “Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis,” Electrochemistry Communications, vol. 5, no. 9, pp. 825–829, Sep. 2003, doi: 10.1016/j.elecom.2003.07.006.
  • [40] P. Y. Chen, R. Vittal, P.-C. Nien, and K.-C. Ho, “Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion®,” Biosensors and Bioelectronics, vol. 24, no. 12, pp. 3504–3509, Aug. 2009, doi: 10.1016/j.bios.2009.05.003.
  • [41] H. Wang, S. Yao, Y. Liu, S. Wei, J. Su, and G. Hu, “Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs,” Biosensors and Bioelectronics, vol. 87, pp. 417–421, Jan. 2017, doi: 10.1016/j.bios.2016.08.092.
  • [42] P. B. Desai, R. M. Kotkar, and A. K. Srivastava, “Electrochemical behaviour of pyridoxine hydrochloride (vitamin B6) at carbon paste electrode modified with crown ethers,” Journal of Solid State Electrochemistry, vol. 12, no. 9, pp. 1067–1075, Sep. 2008, doi: 10.1007/s10008-007-0435-9.
  • [43] R. M. Kotkar, P. B. Desai, and A. K. Srivastava, “Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes,” Sensors and Actuators B: Chemical, vol. 124, no. 1, pp. 90–98, Jun. 2007, doi: 10.1016/j.snb.2006.12.004.
  • [44] G. Rounaghi, R. M. kakhki, and H. Azizi-toupkanloo, “Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles,” Materials Science and Engineering: C, vol. 32, no. 2, pp. 172–177, Mar. 2012, doi: 10.1016/j.msec.2011.10.014.
  • [45] N. Serrano, A. González-Calabuig, and M. del Valle, “Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd(II), Pb(II) and Cu(II),” Talanta, vol. 138, pp. 130–137, Jun. 2015, doi: 10.1016/j.talanta.2015.01.044.
  • [46] M. L. Colombo, S. McNeil, N. Iwai, A. Chang, and M. Shen, “Electrochemical Detection of Dopamine via Assisted Ion Transfer at Nanopipet Electrode Using Cyclic Voltammetry,” Journal of The Electrochemical Society, vol. 163, no. 4, p. H3072, Dec. 2015, doi: 10.1149/2.0091604jes.
  • [47] S. Koçoğlu, Z. Hayvalı, H. Ogutcu, and O. Atakol, “Synthesis, antimicrobial and thermal studies of nitropyridine-substituted double armed benzo-15-crown-5 ligands; alkali (Na+ and K+) and transition metal (Ag+) complexes; reduction of nitro compounds,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 102, no. 9, pp. 763–780, Oct. 2022, doi: 10.1007/s10847-022-01157-y.
  • [48] S. Koçoğlu, H. Ogutcu, and Z. Hayvalı, “Photophysical and antimicrobial properties of new double-armed benzo-15-crown-5 ligands and complexes,” Research on Chemical Intermediates, vol. 45, no. 4, pp. 2403–2427, Apr. 2019, doi: 10.1007/s11164-019-03741-3.
  • [49] A. E. F. Oliveira, G. B. Bettio, and A. C. Pereira, “Optimization of an Electrochemical Sensor for Determination of Imidacloprid Based on β-cyclodextrin Electropolymerization on Glassy Carbon Electrode,” Electroanalysis, vol. 30, no. 9, pp. 1929–1937, 2018, doi: 10.1002/elan.201800235.
  • [50] İ. Okman Koçoğlu, P. E. Erden, and E. Kılıç, “Disposable biosensor based on ionic liquid, carbon nanofiber and poly(glutamic acid) for tyramine determination,” Analytical Biochemistry, vol. 684, p. 115387, Jan. 2024, doi: 10.1016/j.ab.2023.115387.
  • [51] Y. H. Chang, P. M. Woi, and Y. Alias, “Optimization parameters for electropolymerization of melamine in deep eutectic solvent,” Malaysian Journal of Analytical Sciences, vol. 26, no. 2, pp. 202–214, 2022.
  • [52] J. Ahmed, M. Faisal, F. A. Harraz, M. Jalalah, and S. A. Alsareii, “Development of an amperometric biosensor for dopamine using novel mesoporous silicon nanoparticles fabricated via a facile stain etching approach,” Physica E: Low-dimensional Systems and Nanostructures, vol. 135, p. 114952, Jan. 2022, doi: 10.1016/j.physe.2021.114952.
  • [53] E. Wudarska, E. Chrzescijanska, E. Kusmierek, and J. Rynkowski, “Electrochemical Behavior of 2-(p-isobutylphenyl)propionic Acid at Platinum Electrode,” International Journal of Electrochemical Science, vol. 10, no. 11, pp. 9433–9442, Nov. 2015, doi: 10.1016/S1452-3981(23)11191-6.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektroanalitik Kimya, Sensör Teknolojisi
Bölüm Makaleler
Yazarlar

İrem Okman Koçoğlu 0000-0001-6071-9795

Proje Numarası KBÜBAP-24-DS-039
Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 2 Nisan 2024
Kabul Tarihi 19 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Okman Koçoğlu, İ. (2024). Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine. Duzce University Journal of Science and Technology, 12(4), 2185-2199. https://doi.org/10.29130/dubited.1463687
AMA Okman Koçoğlu İ. Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine. DÜBİTED. Ekim 2024;12(4):2185-2199. doi:10.29130/dubited.1463687
Chicago Okman Koçoğlu, İrem. “Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 2185-99. https://doi.org/10.29130/dubited.1463687.
EndNote Okman Koçoğlu İ (01 Ekim 2024) Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine. Duzce University Journal of Science and Technology 12 4 2185–2199.
IEEE İ. Okman Koçoğlu, “Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine”, DÜBİTED, c. 12, sy. 4, ss. 2185–2199, 2024, doi: 10.29130/dubited.1463687.
ISNAD Okman Koçoğlu, İrem. “Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 2185-2199. https://doi.org/10.29130/dubited.1463687.
JAMA Okman Koçoğlu İ. Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine. DÜBİTED. 2024;12:2185–2199.
MLA Okman Koçoğlu, İrem. “Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 2185-99, doi:10.29130/dubited.1463687.
Vancouver Okman Koçoğlu İ. Investigation of Some Crown Ether Compounds for Electrochemical Determination of Dopamine. DÜBİTED. 2024;12(4):2185-99.