Araştırma Makalesi
BibTex RIS Kaynak Göster

Examining the Effects of Human Bodies Blocking Indoor Links at 28 GHz with a Perfectly Conducting Cylinder Model

Yıl 2020, , 1118 - 1127, 31.01.2020
https://doi.org/10.29130/dubited.605614

Öz

In the literature, due to its mathematically tractable nature, Double Knife-Edge Diffraction (DKED) model is often used to predict the loss caused by human body blockage in short-range indoor links. However, the rectangular screen used to simulate the human body in the model may insufficient to represent the physics of human body. This adversely affects the prediction accuracy of the model especially in the presence of multiple human blockage events. On the other hand, perfectly conducting cylinder model based on Geometrical Theory of Diffraction (GTD) is another well-known model used in the literature. Yet, the prediction accuracy of this model has not been studied in the case of multiple human blockage. Therefore, the purpose of this letter is to examine the accuracy of conducting cylinder model in predicting propagation loss due to multiple human blockage in short-range indoor links at 28 GHz, one of the most probable frequency bands allocated for 5G. To this end, firstly, a short-range indoor link was fully blocked by a human body, meanwhile, another human body around the link was approached to the link, and measurements were conducted. Then, GTD and DKED model were utilized to predict the propagation loss. In order to analyze the prediction accuracy of the models, measurement and simulation results were compared. As a result, for the first time in the literature, it has been observed that the prediction accuracy of multiple human body blockage is increased by using GTD-based model with experimental studies.

Kaynakça

  • [1] T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!”, IEEE Access, vol. 1, pp. 335–349, 2013.
  • [2] T.S. Rappaport, Y. Xing, G.R. MacCartney, A.F. Molisch, E. Mellios, J. Zhang, “Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks with a Focus on Propagation Models”, IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017.
  • [3] M. Jacob, S. Priebe, R. Dickhoff, T. Kleine-Ostmann, T. Schrader, T. Kurner, “Diffraction in mm and sub-mm Wave Indoor Propagation Channels”, IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 833–844, 2012.
  • [4] M. Ghaddar, L. Talbi, T.A. Denidni, A. Sebak, “A Conducting Cylinder for Modeling Human Body Presence in Indoor Propagation Channel”, IEEE Transactions on Antennas Propagation, vol. 55, no. 11, pp. 3099–3103, 2007.
  • [5] C. Gustafson, F. Tufvesson, “Characterization of 60 GHz Shadowing by Human Bodies and Simple Phantoms”, Radioengineering, vol. 21, no. 4, pp. 979–984, 2012.
  • [6] G.R. MacCartney, S. Deng, S. Sun, T.S. Rappaport, “Millimeter-wave human blockage at 73 ghz with a simple double knife-edge diffraction model and extension for directional antennas”, IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal-Canada, 2016, pp. 1–6.
  • [7] X. Zhao, Q. Wang, S. Li, S. Geng, M. Wang, S. Sun, Z. Wen, “Attenuation by Human Bodies at 26- and 39.5-GHz Millimeter Wavebands”, IEEE Antennas Wireless Propagation Letters, vol. 16, pp. 1229–1232, 2016.
  • [8] X. Chen, L. Tian, P. Tang, J. Zhang, “Modelling of human body shadowing based on 28 ghz ındoor measurement results”, IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal-Canada, 2016, pp. 1–5.
  • [9] W. Qi, J. Huang, J. Sun, Y. Tan, C. Wang, X. Ge, “Measurements and modeling of human blockage effects for multiple millimeter wave bands”, 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 2017, pp. 1604–1609.
  • [10] Y. Dalveren, A.H. Alabish, A. Kara, “A Simplified Model for Characterizing the Effects of Scattering Objects and Human Body Blocking Indoor Links at 28 Ghz”, IEEE Access, vol. 7, pp. 69687-69691, 2019.
  • [11] A. Kara, H.L. Bertoni, “Effect of People Moving Near Short-Range Indoor Propagation Links at 2.45 GHz”, Journal of Communications and Networks, vol. 8, no. 3, pp. 286–289, 2006.
  • [12] A. Kara, “Human Body Shadowing Variability in Short-Range indoor Radio Links at 3-11 GHz band”, International Journal of Electronics, vol. 96, no. 2, pp. 205–211, 2009.
  • [13] J.S. Romero-Peña, N. Cardona, “Applicability limits of simplified human blockage models at 5G mm-wave frequencies”, 13th European Conference on Antennas and Propagation (EuCAP), Krakow-Poland, 2019, pp. 1–5.
  • [14] G.L. James, Geometrical Theory of Diffraction for Electromagnetic Diffraction, 3rd ed., London, United Kingdom, The Institution of Engineering and Technology (IET), 2007.
  • [15] P. Karadimas, B. Allen, P. Smith, “Human Body Shadowing Characterization for 60-GHz Indoor Short-Range Wireless Links”, IEEE Antennas Wireless Propagation Letters, vol. 12, pp. 1650–1653, 2013.
  • [16] H.L. Bertoni, Radio Propagation for Modern Wireless Systems, 1st ed., London, United Kingdom, Prentice Hall, 2000. Böl. 6, pp. 143–144.

Mükemmel İletken Silindir Modeli ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi

Yıl 2020, , 1118 - 1127, 31.01.2020
https://doi.org/10.29130/dubited.605614

Öz

Literatürde, kısa mesafe iç mekân haberleşme linklerinde insan vücudu blokajının sebep olduğu kaybın tahmininde matematiksel olarak sade bir yapıya sahip olması sebebiyle Çift Bıçak Kenarlı Kırınım (ÇBKK) modeli sıklıkla kullanılmaktadır. Fakat modelde insan vücudu benzetimi için kullanılan dikdörtgensel ekran, insan vücudu fiziğini temsil etmek için yeterli olmayabilir. Bu durum, özellikle çoklu insan vücudu blokajı olması durumunda, modelin tahmin doğruluğunu olumsuz etkileyebilir. Öte yandan, insan vücudu benzetiminde Geometrik Kırınım Teorisi (GKT) temelli mükemmel iletken silindir modeli, literatürde sıklıkla kullan bir diğer modeldir. Ancak bu modelin, çoklu insan vücudu blokajı durumunda, yayılım kaybını tahmin etmedeki etkisi henüz çalışılmamıştır. Bu nedenle, sunulan bu kısa çalışmadaki amaç, iletken silindir modelinin, 5G için tahsis edilmesi en muhtemel frekans bantlarından biri olan 28 GHz’de, çoklu insan vücudu blokajının neden olduğu kısa mesafe iç mekân linklerindeki yayılım kaybını tahmin etmedeki doğruluğunu irdelemektir. Bu amaçla, öncelikle, kısa mesafe iç mekân linki bir insan vücudu ile tamamen bloklanmış; aynı anda, link yakınındaki başka bir insan vücudu linke yaklaştırılarak ölçümler yapılmıştır. Sonrasında, yayılım kaybını tahmin etmek için GKT ve ÇBKK modelinden faydalanılmıştır. Tahmin doğruluğu analizi için simülasyon ve ölçüm sonuçları karşılaştırılmıştır. Sonuç olarak deneysel çalışmalar ile literatürde ilk defa, çoklu insan vücudu blokajının GKT modeli ile tahmin doğruluğunun arttığı gözlemlenmiştir.

Kaynakça

  • [1] T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!”, IEEE Access, vol. 1, pp. 335–349, 2013.
  • [2] T.S. Rappaport, Y. Xing, G.R. MacCartney, A.F. Molisch, E. Mellios, J. Zhang, “Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks with a Focus on Propagation Models”, IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017.
  • [3] M. Jacob, S. Priebe, R. Dickhoff, T. Kleine-Ostmann, T. Schrader, T. Kurner, “Diffraction in mm and sub-mm Wave Indoor Propagation Channels”, IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 833–844, 2012.
  • [4] M. Ghaddar, L. Talbi, T.A. Denidni, A. Sebak, “A Conducting Cylinder for Modeling Human Body Presence in Indoor Propagation Channel”, IEEE Transactions on Antennas Propagation, vol. 55, no. 11, pp. 3099–3103, 2007.
  • [5] C. Gustafson, F. Tufvesson, “Characterization of 60 GHz Shadowing by Human Bodies and Simple Phantoms”, Radioengineering, vol. 21, no. 4, pp. 979–984, 2012.
  • [6] G.R. MacCartney, S. Deng, S. Sun, T.S. Rappaport, “Millimeter-wave human blockage at 73 ghz with a simple double knife-edge diffraction model and extension for directional antennas”, IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal-Canada, 2016, pp. 1–6.
  • [7] X. Zhao, Q. Wang, S. Li, S. Geng, M. Wang, S. Sun, Z. Wen, “Attenuation by Human Bodies at 26- and 39.5-GHz Millimeter Wavebands”, IEEE Antennas Wireless Propagation Letters, vol. 16, pp. 1229–1232, 2016.
  • [8] X. Chen, L. Tian, P. Tang, J. Zhang, “Modelling of human body shadowing based on 28 ghz ındoor measurement results”, IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal-Canada, 2016, pp. 1–5.
  • [9] W. Qi, J. Huang, J. Sun, Y. Tan, C. Wang, X. Ge, “Measurements and modeling of human blockage effects for multiple millimeter wave bands”, 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 2017, pp. 1604–1609.
  • [10] Y. Dalveren, A.H. Alabish, A. Kara, “A Simplified Model for Characterizing the Effects of Scattering Objects and Human Body Blocking Indoor Links at 28 Ghz”, IEEE Access, vol. 7, pp. 69687-69691, 2019.
  • [11] A. Kara, H.L. Bertoni, “Effect of People Moving Near Short-Range Indoor Propagation Links at 2.45 GHz”, Journal of Communications and Networks, vol. 8, no. 3, pp. 286–289, 2006.
  • [12] A. Kara, “Human Body Shadowing Variability in Short-Range indoor Radio Links at 3-11 GHz band”, International Journal of Electronics, vol. 96, no. 2, pp. 205–211, 2009.
  • [13] J.S. Romero-Peña, N. Cardona, “Applicability limits of simplified human blockage models at 5G mm-wave frequencies”, 13th European Conference on Antennas and Propagation (EuCAP), Krakow-Poland, 2019, pp. 1–5.
  • [14] G.L. James, Geometrical Theory of Diffraction for Electromagnetic Diffraction, 3rd ed., London, United Kingdom, The Institution of Engineering and Technology (IET), 2007.
  • [15] P. Karadimas, B. Allen, P. Smith, “Human Body Shadowing Characterization for 60-GHz Indoor Short-Range Wireless Links”, IEEE Antennas Wireless Propagation Letters, vol. 12, pp. 1650–1653, 2013.
  • [16] H.L. Bertoni, Radio Propagation for Modern Wireless Systems, 1st ed., London, United Kingdom, Prentice Hall, 2000. Böl. 6, pp. 143–144.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yaser Dalveren 0000-0002-9459-0042

Ali Kara Bu kişi benim 0000-0002-9739-7619

Yayımlanma Tarihi 31 Ocak 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Dalveren, Y., & Kara, A. (2020). Mükemmel İletken Silindir Modeli ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi. Duzce University Journal of Science and Technology, 8(1), 1118-1127. https://doi.org/10.29130/dubited.605614
AMA Dalveren Y, Kara A. Mükemmel İletken Silindir Modeli ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi. DÜBİTED. Ocak 2020;8(1):1118-1127. doi:10.29130/dubited.605614
Chicago Dalveren, Yaser, ve Ali Kara. “Mükemmel İletken Silindir Modeli Ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi”. Duzce University Journal of Science and Technology 8, sy. 1 (Ocak 2020): 1118-27. https://doi.org/10.29130/dubited.605614.
EndNote Dalveren Y, Kara A (01 Ocak 2020) Mükemmel İletken Silindir Modeli ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi. Duzce University Journal of Science and Technology 8 1 1118–1127.
IEEE Y. Dalveren ve A. Kara, “Mükemmel İletken Silindir Modeli ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi”, DÜBİTED, c. 8, sy. 1, ss. 1118–1127, 2020, doi: 10.29130/dubited.605614.
ISNAD Dalveren, Yaser - Kara, Ali. “Mükemmel İletken Silindir Modeli Ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi”. Duzce University Journal of Science and Technology 8/1 (Ocak 2020), 1118-1127. https://doi.org/10.29130/dubited.605614.
JAMA Dalveren Y, Kara A. Mükemmel İletken Silindir Modeli ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi. DÜBİTED. 2020;8:1118–1127.
MLA Dalveren, Yaser ve Ali Kara. “Mükemmel İletken Silindir Modeli Ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi”. Duzce University Journal of Science and Technology, c. 8, sy. 1, 2020, ss. 1118-27, doi:10.29130/dubited.605614.
Vancouver Dalveren Y, Kara A. Mükemmel İletken Silindir Modeli ile 28 GHz’de İç Mekân Linklerini Bloke Eden İnsanların Etkilerinin İrdelenmesi. DÜBİTED. 2020;8(1):1118-27.