Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrotermal olarak Sentezlenen Çiçek benzeri NiO@Fe3O4'ün Katalitik Özellikleri

Yıl 2020, , 1964 - 1974, 31.07.2020
https://doi.org/10.29130/dubited.721970

Öz

Bu çalışmada, çiçek benzeri NiO hidrotermal yöntemle sentezlendi. Daha sonra NiO üzerine, Fe3O4 katkılanarak manyetik özellik kazandırıldı. Elde edilen ürünlerin kristal yapıları XRD (X-ışını kırınımı) metodu ile incelenmiştir. Üretilen yapıların morfolojik özellikleri SEM (Taramalı Elektron Mikroskopisi), ve TEM (Geçirimli Elektron Mikroskobisi ) ile karakterize edildi. Ayrıca manyetik ölçümleri için VSM (Manyetik Histeresis Ölçümü) analizi yapıldı. Daha sonra ürünlerin, 4-nitrofenolün (4-NP) indirgenmesinde katalizör olarak kullanımı incelendi. Özellikle NiO ve Fe3O4’ün nitrofenolün azaltılması için mükemmel katalitik performans sergilediğini görülürken NiO@Fe3O4 manyetik mikro yapıdaki çiçeklerin çok düşük katalitik aktivite sergilediğini belirlendi.

Kaynakça

  • [1] H. Woo, J. W. Kim, M. Kim, S. Park, K. H. Park, “Au nanoparticles supported on magneticallyseparable Fe2O3–graphene oxide hybrid nanosheets for the catalytic reduction of 4-nitrophenol,” RSC Advances, vol. 5, no. 10, pp. 7554–7558, 2015.
  • [2] Y. C. Chang, D. H. Chen, “Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst,” Journal of Hazardous Materials, vol. 165, no.1-3, pp. 664-669, 2009.
  • [3] A. Chinnappan, S. K. Eshkalak, C. Baskar, M. Khatibzadeh, E. Kowsarid, S. Ramakrishna, “Flower-like 3-dimensional hierarchical Co3O4/NiO microspheres for 4-nitrophenol reduction reaction,” Nanoscale Advances, vol. 1, pp. 305-313, 2019.
  • [4] K. Sravanthi, D. Ayodhya, P. Y. Swamy, “Green synthesis, characterization and catalytic activity of 4-nitrophenolreduction and formation of benzimidazoles using bentonite supportedzero valent iron nanoparticles,” Materials Science for Energy Technologies, vol. 2, no. 2, pp. 298-307, 2019.
  • [5] M. J. Vaidya, S. M. Kulkarni, R. V. Chaudhari, “Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol,” Organic Process Research & Development, vol. 7, pp. 202-208 2003.
  • [6] A. H. Abbar, A. H. Sulaymon, M. G. Jalhoom, “Scale-up of a fixed bed electrochemical reactor consisting of parallel screen electrode used for p-aminophenol production,” Electrochimica Acta, vol. 53, pp. 1671-1679, 2007.
  • [7] J. Feng , L. Sua, Y. Ma, C. Ren, Q. Guo, X. Chen, “CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol,” Chemical Engineering Journal, vol. 221, pp. 16-24, 2013.
  • [8] K. Zhang, J. M. Suh, J.-W. Choi, H. W. Jang, M. Shokouhimehr, R. S. Varma, “Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water,” ACS Omega, vol. 4, no. 1, pp. 483-495, 2019.
  • [9] A. Mondal, A. Mondal, B. Adhıkary, D. K. Mukherjee, “Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions,” Bulletin of Materials Science, vol. 40, no. 2, pp. 321-328, 2017.
  • [10] A. S. Hashimi, M. A. N. M. Nohan, S. X. Chin, S. Zakaria, C. H. Chia, “Rapid catalytic reduction of 4-Nitrophenol and clock reaction of methylene blue using copper nanowires,” Nanomaterials, vol. 9, no. 936, pp. 1-13, 2019.
  • [11] K. S. Shin, J.-Y. Choi, C. S. Park, H. J. Jang, K. Kim, “Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles,” Catalysis Letters, vol. 133, pp. 1-7, 2009.
  • [12] K. Kalantari, A. B. M. Afifi, S. Bayat, K. Shameli, S. Yousefi, N. Mokhtar, A. Kalantari “Heterogeneous catalysis in 4-nitrophenol degradation and antioxidant activities of silver nanoparticles embedded in Tapioca starch,” Arabian Journal of Chemistry, vol. 12, no. 8, pp. 5246-5252, 2019.
  • [13] S. Pandey, S. B.Mishra, “Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum,” Carbohydrate Polymers, vol. 113, pp. 525-531, 2014.
  • [14] K. Hasan, I. A. Shehadi, N. D. Al-Bab, A. Elgamouz, “Magnetic chitosan-supported silver nanoparticles: A heterogeneous catalyst for the reduction of 4-Nitrophenol,” Catalysts, vol. 9, no. 839, pp. 1-18, 2019.
  • [15] V. K. Gupta, N. Atar, M. L. Yolac, Z. Üstündağ, L. Uzun, “A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds,” Water Research, vol. 48, no. 1, pp. 210-217, 2014.
  • [16] L. Ai, J. Jiang, “Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel,” Bioresource Technology, vol. 132, pp. 374-377, 2013.
  • [17] M. S. Chavali, M. P. Nikolova, “Metal oxide nanoparticles and their applications in nanotechnology,” SN Applied Sciences, vol. 1, no. 607, pp. 1-30, 2019.
  • [18] J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein Journal of Nanotechnology, vol. 9, pp. 1050-1074, 2018.
  • [19] P. Shende, P. Kasture, R.S. Gaud, “Nanoflowers: The future trend of nanotechnology for multi-applications,” Artificial Cells, Nanomedicine, and Biotechnology, vol. 46, no. S1, pp. 413-422, 2018.
  • [20] T. R. Mandlimath, B. Gopal, “Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol,” Journal of Molecular Catalysis A: Chemical, vol. 350, no. 1-2, pp. 9-15, 2011.
  • [21] B. M. Mogudi, P. Ncube, R. Meijboom, “Catalytic activity of mesoporous cobalt oxides with controlledporosity and crystallite sizes: Evaluation using the reduction of4-nitrophenol,” Applied Catalysis B: Environmental, vol. 198, pp. 74-82, 2016.
  • [22] Y. Ma, Y. Ni, F. Guo, N. Xiang, “Flowerlike copper(II)-based coordination polymers particles: Rapid room-temperature fabrication, influencing factors, and transformation toward CuO microstructures with good catalytic activity for the reduction of 4-Nitrophenol,” Crystal Growth & Design, vol. 15, no. 5, pp. 2243-2252, 2015.
  • [23] A. H. Kianfar, M. A. Arayesh, “Synthesis, characterization and investigation of photocatalytic and catalytic applications of Fe3O4/TiO2/CuO nanoparticles for degradation of MB and reduction of nitrophenols,” Journal of Environmental Chemical Engineering, vol. 8, no. 1, pp. 103640, 2020.
  • [24] Y. Zhong, Y. Gua, L.Yua, G. Cheng, X. Yang, M. Sun, B. He, “APTES-functionalized Fe3O4 microspheres supported Cu atom-clusters with superior catalytic activity towards 4-nitrophenol reduction,” Colloids and Surfaces A, vol. 547 pp. 28-36. 2018.
  • [25] U. Kurtan, A. Baykal, “Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol,” Materials Research Bulletin, vol. 60, pp. 79-87, 2014.
  • [26] Y. B. Mollamahale, Z. Liu, Y. Zhen, Z. Q. Tian, D. Hosseini, L. Chen, P. K. Shen, “Simple fabrication of porous NiO nanoflowers: Growth mechanism, shape evolution and their application into Li-ion batteries,” International Journal of Hydrogen Energy, vol. 42, no. 10, pp. 7202-72110, 2017.
  • [27] W. Lei, Y. Liu, X. Si, J. Xu, W. Du, J. Yang, T. Zhou, J. Lin, “Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 381, no. 4, pp. 314-318, 2017.
  • [28] V. Sudha, S. Murugesan, S. Kumar, R. Thangamuthu, “Synthesis and characterization of NiO nanoplatelet and its application in electrochemical sensing of sulphite,” Journal of Alloys and Compounds, vol. 744, pp. 621-628, 2018.
  • [29] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, “Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles,” Materials Research Bulletin, vol. 43, no. 8-9, pp. 2457-2468, 2008.
  • [30] F. Sahin, E. Turan, H. Tumturk, G. Demirel, “Core–shell magnetic nanoparticles: A comparative study based on silica and polydopamine coating for magnetic bio-separation platforms,” Analyst, vol. 137, pp. 5654-5658, 2012.
  • [31] E. Mahmoudi, M. A. Behnajady, “Synthesis of Fe3O4@NiO core-shell nanocomposite by the precipitation method and investigation of Cr(VI) adsorption efficiency,” Colloids and Surfaces A, vol. 538, pp. 287-296, 2018.
  • [32] A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, “Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red,” Journal of Alloys and Compounds, vol. 680, pp. 309-314, 2016.
  • [33] J. Fu, S. Wang, J. Zhu, K. Wang, M. Gao, X. Wang, Q. Xu, “Au-Ag bimetallic nanoparticles decorated multi-amino cyclophosphazene hybrid microspheres as enhanced activity catalysts for the reduction of 4-nitrophenol,” Materials Chemistry and Physics, vol. 207, pp. 315-324, 2018.
  • [34] Z. Jiang, J. Xie, D. Jiang, X. Wei, M. Chen, “Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction,” CrystEngComm, vol. 15, pp. 560-569, 2013.

Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4

Yıl 2020, , 1964 - 1974, 31.07.2020
https://doi.org/10.29130/dubited.721970

Öz

In this study, flower-like NiO structures were synthesized by hydrothermal method. Then, Fe3O4 was doped on NiO that NiO structures gain magnetic properties. TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy) were used to assess the morphology of the NiO structures. XRD (X-ray Diffraction) was used to evaluate the crystal structures of the NiO structures. Magnetic properties of the NiO structures were investigated using VSM (Vibrating Sample Magnetometry). Catalysis properties of the produced structures were assessed use of products as catalyst in the reduction of 4-nitrophenol (4-NP) was examined. Especially NiO and Fe3O4 were found to exhibit excellent catalytic performance for nitrophenol reduction, while NiO@Fe3O4 magnetic microflowers were found to exhibit very low catalytic activity.

Kaynakça

  • [1] H. Woo, J. W. Kim, M. Kim, S. Park, K. H. Park, “Au nanoparticles supported on magneticallyseparable Fe2O3–graphene oxide hybrid nanosheets for the catalytic reduction of 4-nitrophenol,” RSC Advances, vol. 5, no. 10, pp. 7554–7558, 2015.
  • [2] Y. C. Chang, D. H. Chen, “Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst,” Journal of Hazardous Materials, vol. 165, no.1-3, pp. 664-669, 2009.
  • [3] A. Chinnappan, S. K. Eshkalak, C. Baskar, M. Khatibzadeh, E. Kowsarid, S. Ramakrishna, “Flower-like 3-dimensional hierarchical Co3O4/NiO microspheres for 4-nitrophenol reduction reaction,” Nanoscale Advances, vol. 1, pp. 305-313, 2019.
  • [4] K. Sravanthi, D. Ayodhya, P. Y. Swamy, “Green synthesis, characterization and catalytic activity of 4-nitrophenolreduction and formation of benzimidazoles using bentonite supportedzero valent iron nanoparticles,” Materials Science for Energy Technologies, vol. 2, no. 2, pp. 298-307, 2019.
  • [5] M. J. Vaidya, S. M. Kulkarni, R. V. Chaudhari, “Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol,” Organic Process Research & Development, vol. 7, pp. 202-208 2003.
  • [6] A. H. Abbar, A. H. Sulaymon, M. G. Jalhoom, “Scale-up of a fixed bed electrochemical reactor consisting of parallel screen electrode used for p-aminophenol production,” Electrochimica Acta, vol. 53, pp. 1671-1679, 2007.
  • [7] J. Feng , L. Sua, Y. Ma, C. Ren, Q. Guo, X. Chen, “CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol,” Chemical Engineering Journal, vol. 221, pp. 16-24, 2013.
  • [8] K. Zhang, J. M. Suh, J.-W. Choi, H. W. Jang, M. Shokouhimehr, R. S. Varma, “Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water,” ACS Omega, vol. 4, no. 1, pp. 483-495, 2019.
  • [9] A. Mondal, A. Mondal, B. Adhıkary, D. K. Mukherjee, “Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions,” Bulletin of Materials Science, vol. 40, no. 2, pp. 321-328, 2017.
  • [10] A. S. Hashimi, M. A. N. M. Nohan, S. X. Chin, S. Zakaria, C. H. Chia, “Rapid catalytic reduction of 4-Nitrophenol and clock reaction of methylene blue using copper nanowires,” Nanomaterials, vol. 9, no. 936, pp. 1-13, 2019.
  • [11] K. S. Shin, J.-Y. Choi, C. S. Park, H. J. Jang, K. Kim, “Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles,” Catalysis Letters, vol. 133, pp. 1-7, 2009.
  • [12] K. Kalantari, A. B. M. Afifi, S. Bayat, K. Shameli, S. Yousefi, N. Mokhtar, A. Kalantari “Heterogeneous catalysis in 4-nitrophenol degradation and antioxidant activities of silver nanoparticles embedded in Tapioca starch,” Arabian Journal of Chemistry, vol. 12, no. 8, pp. 5246-5252, 2019.
  • [13] S. Pandey, S. B.Mishra, “Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum,” Carbohydrate Polymers, vol. 113, pp. 525-531, 2014.
  • [14] K. Hasan, I. A. Shehadi, N. D. Al-Bab, A. Elgamouz, “Magnetic chitosan-supported silver nanoparticles: A heterogeneous catalyst for the reduction of 4-Nitrophenol,” Catalysts, vol. 9, no. 839, pp. 1-18, 2019.
  • [15] V. K. Gupta, N. Atar, M. L. Yolac, Z. Üstündağ, L. Uzun, “A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds,” Water Research, vol. 48, no. 1, pp. 210-217, 2014.
  • [16] L. Ai, J. Jiang, “Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel,” Bioresource Technology, vol. 132, pp. 374-377, 2013.
  • [17] M. S. Chavali, M. P. Nikolova, “Metal oxide nanoparticles and their applications in nanotechnology,” SN Applied Sciences, vol. 1, no. 607, pp. 1-30, 2019.
  • [18] J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein Journal of Nanotechnology, vol. 9, pp. 1050-1074, 2018.
  • [19] P. Shende, P. Kasture, R.S. Gaud, “Nanoflowers: The future trend of nanotechnology for multi-applications,” Artificial Cells, Nanomedicine, and Biotechnology, vol. 46, no. S1, pp. 413-422, 2018.
  • [20] T. R. Mandlimath, B. Gopal, “Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol,” Journal of Molecular Catalysis A: Chemical, vol. 350, no. 1-2, pp. 9-15, 2011.
  • [21] B. M. Mogudi, P. Ncube, R. Meijboom, “Catalytic activity of mesoporous cobalt oxides with controlledporosity and crystallite sizes: Evaluation using the reduction of4-nitrophenol,” Applied Catalysis B: Environmental, vol. 198, pp. 74-82, 2016.
  • [22] Y. Ma, Y. Ni, F. Guo, N. Xiang, “Flowerlike copper(II)-based coordination polymers particles: Rapid room-temperature fabrication, influencing factors, and transformation toward CuO microstructures with good catalytic activity for the reduction of 4-Nitrophenol,” Crystal Growth & Design, vol. 15, no. 5, pp. 2243-2252, 2015.
  • [23] A. H. Kianfar, M. A. Arayesh, “Synthesis, characterization and investigation of photocatalytic and catalytic applications of Fe3O4/TiO2/CuO nanoparticles for degradation of MB and reduction of nitrophenols,” Journal of Environmental Chemical Engineering, vol. 8, no. 1, pp. 103640, 2020.
  • [24] Y. Zhong, Y. Gua, L.Yua, G. Cheng, X. Yang, M. Sun, B. He, “APTES-functionalized Fe3O4 microspheres supported Cu atom-clusters with superior catalytic activity towards 4-nitrophenol reduction,” Colloids and Surfaces A, vol. 547 pp. 28-36. 2018.
  • [25] U. Kurtan, A. Baykal, “Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol,” Materials Research Bulletin, vol. 60, pp. 79-87, 2014.
  • [26] Y. B. Mollamahale, Z. Liu, Y. Zhen, Z. Q. Tian, D. Hosseini, L. Chen, P. K. Shen, “Simple fabrication of porous NiO nanoflowers: Growth mechanism, shape evolution and their application into Li-ion batteries,” International Journal of Hydrogen Energy, vol. 42, no. 10, pp. 7202-72110, 2017.
  • [27] W. Lei, Y. Liu, X. Si, J. Xu, W. Du, J. Yang, T. Zhou, J. Lin, “Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 381, no. 4, pp. 314-318, 2017.
  • [28] V. Sudha, S. Murugesan, S. Kumar, R. Thangamuthu, “Synthesis and characterization of NiO nanoplatelet and its application in electrochemical sensing of sulphite,” Journal of Alloys and Compounds, vol. 744, pp. 621-628, 2018.
  • [29] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, “Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles,” Materials Research Bulletin, vol. 43, no. 8-9, pp. 2457-2468, 2008.
  • [30] F. Sahin, E. Turan, H. Tumturk, G. Demirel, “Core–shell magnetic nanoparticles: A comparative study based on silica and polydopamine coating for magnetic bio-separation platforms,” Analyst, vol. 137, pp. 5654-5658, 2012.
  • [31] E. Mahmoudi, M. A. Behnajady, “Synthesis of Fe3O4@NiO core-shell nanocomposite by the precipitation method and investigation of Cr(VI) adsorption efficiency,” Colloids and Surfaces A, vol. 538, pp. 287-296, 2018.
  • [32] A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, “Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red,” Journal of Alloys and Compounds, vol. 680, pp. 309-314, 2016.
  • [33] J. Fu, S. Wang, J. Zhu, K. Wang, M. Gao, X. Wang, Q. Xu, “Au-Ag bimetallic nanoparticles decorated multi-amino cyclophosphazene hybrid microspheres as enhanced activity catalysts for the reduction of 4-nitrophenol,” Materials Chemistry and Physics, vol. 207, pp. 315-324, 2018.
  • [34] Z. Jiang, J. Xie, D. Jiang, X. Wei, M. Chen, “Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction,” CrystEngComm, vol. 15, pp. 560-569, 2013.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nurdan Kurnaz Yetim 0000-0001-6227-0346

Yayımlanma Tarihi 31 Temmuz 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kurnaz Yetim, N. (2020). Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4. Duzce University Journal of Science and Technology, 8(3), 1964-1974. https://doi.org/10.29130/dubited.721970
AMA Kurnaz Yetim N. Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4. DÜBİTED. Temmuz 2020;8(3):1964-1974. doi:10.29130/dubited.721970
Chicago Kurnaz Yetim, Nurdan. “Catalytic Properties of Hydrothermally Synthesized Flower-Like NiO@Fe3O4”. Duzce University Journal of Science and Technology 8, sy. 3 (Temmuz 2020): 1964-74. https://doi.org/10.29130/dubited.721970.
EndNote Kurnaz Yetim N (01 Temmuz 2020) Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4. Duzce University Journal of Science and Technology 8 3 1964–1974.
IEEE N. Kurnaz Yetim, “Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4”, DÜBİTED, c. 8, sy. 3, ss. 1964–1974, 2020, doi: 10.29130/dubited.721970.
ISNAD Kurnaz Yetim, Nurdan. “Catalytic Properties of Hydrothermally Synthesized Flower-Like NiO@Fe3O4”. Duzce University Journal of Science and Technology 8/3 (Temmuz 2020), 1964-1974. https://doi.org/10.29130/dubited.721970.
JAMA Kurnaz Yetim N. Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4. DÜBİTED. 2020;8:1964–1974.
MLA Kurnaz Yetim, Nurdan. “Catalytic Properties of Hydrothermally Synthesized Flower-Like NiO@Fe3O4”. Duzce University Journal of Science and Technology, c. 8, sy. 3, 2020, ss. 1964-7, doi:10.29130/dubited.721970.
Vancouver Kurnaz Yetim N. Catalytic Properties of Hydrothermally Synthesized Flower-like NiO@Fe3O4. DÜBİTED. 2020;8(3):1964-7.