Araştırma Makalesi
BibTex RIS Kaynak Göster

Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles

Yıl 2021, , 1469 - 1482, 31.07.2021
https://doi.org/10.29130/dubited.884511

Öz

This study presents the development of a rapid and straightforward Cu2+ determination method through the interaction of glycine-histidine dipeptides with gold nanoparticles (AuNPs). Here, it was shown that AuNPs were clustered by the attachment of glycine-histidine dipeptides (GH) to the AuNPs. Accordingly, it was obtained from the Uv-vis spectrum that the max of the AuNPs dispersion at 520 nm showed a redshift to a higher energy region. This case was accelerated by adding Cu2+ ions to the medium, indicating an interaction between GH coated-AuNPs and Cu2+ ions, and the particles come together in a shorter time. This finding demonstrates that the developed-analytical method provides more selectivity to Cu2+ when testing in the presence of some other metal ions. The particles and aggregates' sizes were determined by Dynamic Light Scattering (DLS) measurement and Transmission Electron Microscopy (TEM) technique. The determination of Cu2+ in the tap water was also tested by spike using the developed method. In the light of the results obtained, it is thought that the developed analytical method can be quite advantageous for the rapid and selective determination of Cu2+ in water samples.

Destekleyen Kurum

University of Health Sciences Turkey Scientific Research Project Office

Proje Numarası

Project no: 2020/10

Teşekkür

This work is supported by University of Health Sciences Turkey Scientific Research Project (Project no: 2020/10).

Kaynakça

  • [1] M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda," Toxicity, mechanism and health effects of some heavy metals," Interdisciplinary Toxicology, vol. 7, no. 2, pp. 60-72, 2014.
  • [2] N. Lewen, S. Mathew, M. Schenkenberger, and T. Raglione, "A rapid ICP-MS screen for heavy metals in pharmaceutical compounds," Journal of Pharmaceutical and Biomedical Analysis, vol. 35, no. 4, pp. 739-752, 2004.
  • [3] Ö. Yalçınkaya, O. M. Kalfa, and A. R. Türker, "Chelating agent free-solid phase extraction (CAF-SPE) of Co(II), Cu(II) and Cd(II) by new nano hybrid material (ZrO2/B2O3)," Journal of Hazardous Materials, vol. 195, pp. 332-339, 2011.
  • [4] M. A. Deshmukh, H. K. Patil, G. A. Bodkhe, M. Yasuzawa, P. Koinkar, A. Ramanaviciene, M. D. Shirsat, and A. Ramanavicius, "EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu(II) ions," Sensors and Actuators B: Chemical, vol. 260, pp.331-338, 2018.
  • [5] R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, "Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica," Talanta, vol. 71, no. 2, pp. 771-777, 2007.
  • [6] C. Yıldız, D. E. Bayraktepe, and Z. Yazan, "NiO Modifiye Karbon Pasta Sensör Yüzeyinde Bakır ve Kadmiyum’un Anodik Sıyırma Voltametrisi ile Tayini," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, no. 3, pp. 1403-1416, 2019.
  • [7] J. Sneddon and M. D. Vincent, "ICP-OES and ICP-MS for the Determination of Metals: Application to Oysters," Analytical Letters, vol. 41, no. 8, pp. 1291-1303, 2008.
  • [8] J. A. Buledi, S. Amin, S. I. Haider, M. I. Bhanger, and A. R. Solangi, "A review on detection of heavy metals from aqueous media using nanomaterial-based sensors," Environmental Science and Pollution Research, 2020.
  • [9] D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, "Modern Applications of Plasmonic Nanoparticles: From Energy to Health," Advanced Optical Materials, vol. 3, no. 5, pp.602-617, 2015.
  • [10] N. G. Khlebtsov and L. A. Dykman, "Optical properties and biomedical applications of plasmonic nanoparticles," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 1, pp.1-35, 2010.
  • [11] L. Wang, M. Hasanzadeh Kafshgari, and M. Meunier, "Optical Properties and Applications of Plasmonic-Metal Nanoparticles," Advanced Functional Materials, vol. 30, no. 51, pp. 2005400, 2020.
  • [12] H. Erdogan, H. Sakalak, M. S. Yavuz, and G. Demirel, "Laser-Triggered Degelation Control of Gold Nanoparticle Embedded Peptide Organogels," Langmuir, vol. 29, no. 23, pp. 6975-6982, 2013.
  • [13] X. Chen and L. Jensen, "Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles," Journal of Optics, vol. 18, no. 7, pp. 074009, 2016.
  • [14] J. Olson, S. Dominguez-Medina, A. Hoggard, L.-Y. Wang, W.-S. Chang, and S. Link, "Optical characterization of single plasmonic nanoparticles," Chemical Society Reviews, vol. 44, no. 1, pp. 40-57, 2015.
  • [15] F. Chai, C. Wang, T. Wang, L. Li, and Z. Su, "Colorimetric Detection of Pb2+ Using Glutathione Functionalized Gold Nanoparticles," ACS Applied Materials & Interfaces, vol. 2, no. 5, pp. 1466-1470, 2010.
  • [16] J. Du, L. Jiang, Q. Shao, X. Liu, R. S. Marks, J. Ma, and X. Chen, "Colorimetric Detection of Mercury Ions Based on Plasmonic Nanoparticles," Small, vol. 9, no. 10, pp. 1467-1481, 2013.
  • [17] Y. Guo, Y. Zhang, H. Shao, Z. Wang, X. Wang, and X. Jiang, "Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles," Analytical Chemistry, vol. 86, no. 17, pp.8530-8534, 2014.
  • [18] S. Zhan, M. Yu, J. Lv, L. Wang and P. Zhou "Colorimetric Detection of Trace Arsenic(III) in Aqueous Solution Using Arsenic Aptamer and Gold Nanoparticles," Australian Journal of Chemistry, vol. 67, no. 5, pp. 813-818, 2014.
  • [19] Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, "Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles," Biosensors and Bioelectronics, vol. 26, no. 10, pp. 4064-4069, 2011.
  • [20] N. Ratnarathorn, O. Chailapakul, and W. Dungchai, "Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles," Talanta, vol. 132, pp. 613-618, 2015.
  • [21] X. Wang, Y. Wei, S. Wang, and L. Chen, "Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 472, pp. 57-62, 2015.
  • [22] N. Mergu and V. K. Gupta, "A novel colorimetric detection probe for copper(II) ions based on a Schiff base, "Sensors and Actuators B: Chemical, vol. 210, pp. 408-417, 2015.
  • [23] Q. Shen, W. Li, S. Tang, Y. Hu, Z. Nie, Y. Huang, and S. Yao, "A simple “clickable” biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles," Biosensors and Bioelectronics, vol. 41, pp. 663-668, 2013.
  • [24] İ. Aksu, H. G. Anlar, G. Taner, M. Bacanlı, S. İritaş, E. Tutkun, and N. Basaran, "Assessment of DNA damage in welders using comet and micronucleus assays," Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 843, pp. 40-45, 2019.
  • [25] D. Tokaç, H. G. Anlar, M. Bacanlı, S. A. Dilsiz, S. İritaş, and N. Başaran, "Oxidative stress status of Turkish welders," Toxicology and Industrial Health, vol. 36, no. 4, pp. 263-271, 2020.
  • [26] S. Liu and X. Li, "Colorimetric detection of copper ions using gold nanorods in aquatic environment," Materials Science and Engineering: B, vol. 240, pp. 49-54, 2019.
  • [27] Z. Weng, H. Wang, J. Vongsvivut, R. Li, A. M. Glushenkov, J. He, Y. Chen, C. J. Barrow, and W. Yang, "Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions," Analytica Chimica Acta, vol. 803, pp. 128-134, 2013.
  • [28] X. Xu, W. L. Daniel, W. Wei, and C. A. Mirkin, "Colorimetric Cu2+ Detection Using DNA-Modified Gold-Nanoparticle Aggregates as Probes and Click Chemistry," Small, vol. 6, no. 5, pp. 623-626, 2010.
  • [29] V. N. Mehta, M. A. Kumar, and S. K. Kailasa, "Colorimetric Detection of Copper in Water Samples Using Dopamine Dithiocarbamate-Functionalized Au Nanoparticles," Industrial & Engineering Chemistry Research, vol. 52, no. 12, pp. 4414-4420, 2013.
  • [30] K. Besar, H. A. M. Ardoña, J. D. Tovar, and H. E. Katz, "Demonstration of Hole Transport and Voltage Equilibration in Self-Assembled π-Conjugated Peptide Nanostructures Using Field-Effect Transistor Architectures," ACS Nano, vol. 9, no. 12, pp. 12401-12409, 2015.
  • [31] H. Erdoğan, "Catalytic degradation of 4-Nitrophenol and methylene blue by bioinspired polydopamine coated dipeptide structures," Colloid and Interface Science Communications, vol. 39, no. pp. 100331, 2020.
  • [32] H. Erdogan, M. Yilmaz, E. Babur, M. Duman, H. M. Aydin, and G. Demirel, "Fabrication of Plasmonic Nanorod-Embedded Dipeptide Microspheres via the Freeze-Quenching Method for Near-Infrared Laser-Triggered Drug-Delivery Applications," Biomacromolecules, vol. 17, no. 5, pp. 1788-1794, 2016.
  • [33] W. Yang, J. J. Gooding, Z. He, Q. Li, and G. Chen, "Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles," J Nanosci Nanotechnol, vol. 7, no. 2, pp. 712-6, 2007.
  • [34] A. R. M. Salcedo and F. B. Sevilla III, "Citrate-capped gold nanoparticles as colorimetric reagent for copper (II) ions," Philipp. Sci. Lett, vol. 6, pp. 90-96, 2013.

Glisin-Histidin Dipeptidler ile Fonksiyonelleştirilmiş Altın Nanoparçacıklar ile Cu2 + 'nin Kolorimetrik Tayini

Yıl 2021, , 1469 - 1482, 31.07.2021
https://doi.org/10.29130/dubited.884511

Öz

Bu çalışma, glisin-histidin dipeptitlerinin altın nanoparçacıklar (AuNP'ler) ile etkileşimi yoluyla hızlı ve basit bir Cu2+ belirleme yönteminin geliştirilmesini sunmaktadır. Burada, AuNP'lerin glisin-histidin dipeptitleri (GH) ile bağlanmasıyla kümelendiği gösterilmiştir. Buna göre, Uv-vis spektrumundan, 520 nm'deki AuNPs dispersiyonunun maksimum absorpsiyon yaptığı dalgaboyunun, daha yüksek bir enerji bölgesine kırmızı bir kayma gösterdiği elde edilmiştir. Bu durum ortama Cu2+ iyonları eklendiğinde hızlanmıştır, Bu da GH kaplı AuNP'ler ile Cu2+ iyonları arasında bir etkileşim olduğunu ve parçacıkların daha kısa sürede bir araya geldiğini göstermektedir. Bu bulgu, geliştirilen analitik yöntemin bazı diğer metal iyonlarının varlığında test edildiğinde Cu2+ 'ya daha fazla seçicilik sağladığını göstermektedir. Parçacıkların ve agregatların boyutları Dinamik Işık Saçılması (DLS) ölçümü ve Transmisyon Elektron Mikroskobu (TEM) tekniği ile belirlenmiştir. Musluk suyundaki Cu2+ tayini de geliştirilen yöntem kullanılarak bilinen derişimlerde Cu2+ eklenerek test edilmiştir. Elde edilen sonuçlar ışığında, geliştirilen analitik yöntemin su örneklerinde Cu2+ 'nın hızlı ve seçici tayini için oldukça avantajlı olabileceği düşünülmektedir.

Proje Numarası

Project no: 2020/10

Kaynakça

  • [1] M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda," Toxicity, mechanism and health effects of some heavy metals," Interdisciplinary Toxicology, vol. 7, no. 2, pp. 60-72, 2014.
  • [2] N. Lewen, S. Mathew, M. Schenkenberger, and T. Raglione, "A rapid ICP-MS screen for heavy metals in pharmaceutical compounds," Journal of Pharmaceutical and Biomedical Analysis, vol. 35, no. 4, pp. 739-752, 2004.
  • [3] Ö. Yalçınkaya, O. M. Kalfa, and A. R. Türker, "Chelating agent free-solid phase extraction (CAF-SPE) of Co(II), Cu(II) and Cd(II) by new nano hybrid material (ZrO2/B2O3)," Journal of Hazardous Materials, vol. 195, pp. 332-339, 2011.
  • [4] M. A. Deshmukh, H. K. Patil, G. A. Bodkhe, M. Yasuzawa, P. Koinkar, A. Ramanaviciene, M. D. Shirsat, and A. Ramanavicius, "EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu(II) ions," Sensors and Actuators B: Chemical, vol. 260, pp.331-338, 2018.
  • [5] R. M. Takeuchi, A. L. Santos, P. M. Padilha, and N. R. Stradiotto, "Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica," Talanta, vol. 71, no. 2, pp. 771-777, 2007.
  • [6] C. Yıldız, D. E. Bayraktepe, and Z. Yazan, "NiO Modifiye Karbon Pasta Sensör Yüzeyinde Bakır ve Kadmiyum’un Anodik Sıyırma Voltametrisi ile Tayini," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, no. 3, pp. 1403-1416, 2019.
  • [7] J. Sneddon and M. D. Vincent, "ICP-OES and ICP-MS for the Determination of Metals: Application to Oysters," Analytical Letters, vol. 41, no. 8, pp. 1291-1303, 2008.
  • [8] J. A. Buledi, S. Amin, S. I. Haider, M. I. Bhanger, and A. R. Solangi, "A review on detection of heavy metals from aqueous media using nanomaterial-based sensors," Environmental Science and Pollution Research, 2020.
  • [9] D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzán, "Modern Applications of Plasmonic Nanoparticles: From Energy to Health," Advanced Optical Materials, vol. 3, no. 5, pp.602-617, 2015.
  • [10] N. G. Khlebtsov and L. A. Dykman, "Optical properties and biomedical applications of plasmonic nanoparticles," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 1, pp.1-35, 2010.
  • [11] L. Wang, M. Hasanzadeh Kafshgari, and M. Meunier, "Optical Properties and Applications of Plasmonic-Metal Nanoparticles," Advanced Functional Materials, vol. 30, no. 51, pp. 2005400, 2020.
  • [12] H. Erdogan, H. Sakalak, M. S. Yavuz, and G. Demirel, "Laser-Triggered Degelation Control of Gold Nanoparticle Embedded Peptide Organogels," Langmuir, vol. 29, no. 23, pp. 6975-6982, 2013.
  • [13] X. Chen and L. Jensen, "Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles," Journal of Optics, vol. 18, no. 7, pp. 074009, 2016.
  • [14] J. Olson, S. Dominguez-Medina, A. Hoggard, L.-Y. Wang, W.-S. Chang, and S. Link, "Optical characterization of single plasmonic nanoparticles," Chemical Society Reviews, vol. 44, no. 1, pp. 40-57, 2015.
  • [15] F. Chai, C. Wang, T. Wang, L. Li, and Z. Su, "Colorimetric Detection of Pb2+ Using Glutathione Functionalized Gold Nanoparticles," ACS Applied Materials & Interfaces, vol. 2, no. 5, pp. 1466-1470, 2010.
  • [16] J. Du, L. Jiang, Q. Shao, X. Liu, R. S. Marks, J. Ma, and X. Chen, "Colorimetric Detection of Mercury Ions Based on Plasmonic Nanoparticles," Small, vol. 9, no. 10, pp. 1467-1481, 2013.
  • [17] Y. Guo, Y. Zhang, H. Shao, Z. Wang, X. Wang, and X. Jiang, "Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles," Analytical Chemistry, vol. 86, no. 17, pp.8530-8534, 2014.
  • [18] S. Zhan, M. Yu, J. Lv, L. Wang and P. Zhou "Colorimetric Detection of Trace Arsenic(III) in Aqueous Solution Using Arsenic Aptamer and Gold Nanoparticles," Australian Journal of Chemistry, vol. 67, no. 5, pp. 813-818, 2014.
  • [19] Y. Guo, Z. Wang, W. Qu, H. Shao, and X. Jiang, "Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles," Biosensors and Bioelectronics, vol. 26, no. 10, pp. 4064-4069, 2011.
  • [20] N. Ratnarathorn, O. Chailapakul, and W. Dungchai, "Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles," Talanta, vol. 132, pp. 613-618, 2015.
  • [21] X. Wang, Y. Wei, S. Wang, and L. Chen, "Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 472, pp. 57-62, 2015.
  • [22] N. Mergu and V. K. Gupta, "A novel colorimetric detection probe for copper(II) ions based on a Schiff base, "Sensors and Actuators B: Chemical, vol. 210, pp. 408-417, 2015.
  • [23] Q. Shen, W. Li, S. Tang, Y. Hu, Z. Nie, Y. Huang, and S. Yao, "A simple “clickable” biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles," Biosensors and Bioelectronics, vol. 41, pp. 663-668, 2013.
  • [24] İ. Aksu, H. G. Anlar, G. Taner, M. Bacanlı, S. İritaş, E. Tutkun, and N. Basaran, "Assessment of DNA damage in welders using comet and micronucleus assays," Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 843, pp. 40-45, 2019.
  • [25] D. Tokaç, H. G. Anlar, M. Bacanlı, S. A. Dilsiz, S. İritaş, and N. Başaran, "Oxidative stress status of Turkish welders," Toxicology and Industrial Health, vol. 36, no. 4, pp. 263-271, 2020.
  • [26] S. Liu and X. Li, "Colorimetric detection of copper ions using gold nanorods in aquatic environment," Materials Science and Engineering: B, vol. 240, pp. 49-54, 2019.
  • [27] Z. Weng, H. Wang, J. Vongsvivut, R. Li, A. M. Glushenkov, J. He, Y. Chen, C. J. Barrow, and W. Yang, "Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions," Analytica Chimica Acta, vol. 803, pp. 128-134, 2013.
  • [28] X. Xu, W. L. Daniel, W. Wei, and C. A. Mirkin, "Colorimetric Cu2+ Detection Using DNA-Modified Gold-Nanoparticle Aggregates as Probes and Click Chemistry," Small, vol. 6, no. 5, pp. 623-626, 2010.
  • [29] V. N. Mehta, M. A. Kumar, and S. K. Kailasa, "Colorimetric Detection of Copper in Water Samples Using Dopamine Dithiocarbamate-Functionalized Au Nanoparticles," Industrial & Engineering Chemistry Research, vol. 52, no. 12, pp. 4414-4420, 2013.
  • [30] K. Besar, H. A. M. Ardoña, J. D. Tovar, and H. E. Katz, "Demonstration of Hole Transport and Voltage Equilibration in Self-Assembled π-Conjugated Peptide Nanostructures Using Field-Effect Transistor Architectures," ACS Nano, vol. 9, no. 12, pp. 12401-12409, 2015.
  • [31] H. Erdoğan, "Catalytic degradation of 4-Nitrophenol and methylene blue by bioinspired polydopamine coated dipeptide structures," Colloid and Interface Science Communications, vol. 39, no. pp. 100331, 2020.
  • [32] H. Erdogan, M. Yilmaz, E. Babur, M. Duman, H. M. Aydin, and G. Demirel, "Fabrication of Plasmonic Nanorod-Embedded Dipeptide Microspheres via the Freeze-Quenching Method for Near-Infrared Laser-Triggered Drug-Delivery Applications," Biomacromolecules, vol. 17, no. 5, pp. 1788-1794, 2016.
  • [33] W. Yang, J. J. Gooding, Z. He, Q. Li, and G. Chen, "Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles," J Nanosci Nanotechnol, vol. 7, no. 2, pp. 712-6, 2007.
  • [34] A. R. M. Salcedo and F. B. Sevilla III, "Citrate-capped gold nanoparticles as colorimetric reagent for copper (II) ions," Philipp. Sci. Lett, vol. 6, pp. 90-96, 2013.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hakan Erdoğan 0000-0002-7791-7445

Proje Numarası Project no: 2020/10
Yayımlanma Tarihi 31 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Erdoğan, H. (2021). Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles. Duzce University Journal of Science and Technology, 9(4), 1469-1482. https://doi.org/10.29130/dubited.884511
AMA Erdoğan H. Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles. DÜBİTED. Temmuz 2021;9(4):1469-1482. doi:10.29130/dubited.884511
Chicago Erdoğan, Hakan. “Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles”. Duzce University Journal of Science and Technology 9, sy. 4 (Temmuz 2021): 1469-82. https://doi.org/10.29130/dubited.884511.
EndNote Erdoğan H (01 Temmuz 2021) Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles. Duzce University Journal of Science and Technology 9 4 1469–1482.
IEEE H. Erdoğan, “Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles”, DÜBİTED, c. 9, sy. 4, ss. 1469–1482, 2021, doi: 10.29130/dubited.884511.
ISNAD Erdoğan, Hakan. “Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles”. Duzce University Journal of Science and Technology 9/4 (Temmuz 2021), 1469-1482. https://doi.org/10.29130/dubited.884511.
JAMA Erdoğan H. Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles. DÜBİTED. 2021;9:1469–1482.
MLA Erdoğan, Hakan. “Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles”. Duzce University Journal of Science and Technology, c. 9, sy. 4, 2021, ss. 1469-82, doi:10.29130/dubited.884511.
Vancouver Erdoğan H. Colorimetric Determination of Cu2+ by Glycine-Histidine Dipeptide Functionalized-Gold Nanoparticles. DÜBİTED. 2021;9(4):1469-82.