Araştırma Makalesi
BibTex RIS Kaynak Göster

Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu

Yıl 2022, , 186 - 197, 31.01.2022
https://doi.org/10.29130/dubited.947152

Öz

Bu çalışmada hayvancılıkta yaygın bir şekilde kullanılan oksitetrasiklin (OTC) antibiyotiğinin sodyum ve hekzadesiltrimetilammonyum (HDTMA) ile modifiye edilmiş zeolite adsorpsiyonu incelenmiştir. Adsorpsiyon çalışmaları farklı OTC konsantrasyonları, çözelti pH’larında ve adsorbent dozajlarında yapılmıştır. Adsorpsiyon izoterm verileri Freundlich modeline uygulanmıştır. HDTMA-zeolit ile antibiyotik giderimi pH’a kuvvetli bir bağlılık göstermiş ve pH 8’de %90’lık maksimum antibiyotik giderimi elde edilirken, Na-zeolitle pH 6.5’ta %88’lik maksimum OTC adsorpsiyonu elde edilmiştir. Pesudo-birinci ve ikinci derece kinetik denklemleri adsorpsiyon modelini tanımlamak için seçilmiştir. Çeşitli iyonların OTC adsorpsiyonuna etkisi de araştırılmıştır. Kalsiyum, magnezyum, fosfat, klorür ve sülfat iyonları OTC’nin Na ve HDTMA-zeolite adsorpsiyonunu olumsuz yönde etkilerken, bikarbonat iyonları ise OTC’nin HDTMA-zeolite adsorpsiyonunu arttırmıştır. Amonyum iyonları ise OTC ile birlikte Na-zeolit tarafından sudan giderilmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

106Y073

Teşekkür

Bu çalışma Boğaziçi Üniversitesi TUBITAK (Project No 106Y073) tarafından desteklenmiştir. Tez danışmanım Prof. Dr. I. A. Balcıoğlu’na teşekkürlerimi sunarım

Kaynakça

  • [1] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H. Buxton, “Pharmaceuticals, hormones and other organic wastewater contaminants in US streams,” Environmental Science and Technology, vol. 36, pp. 1202-1211, 2002. [2] E.M. Carballo, C.G. Barreıro, S. Scharf and O. Gans, “Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria,” Environmental Pollution, vol. 148, pp. 570-587, 2007. [3] G. Brambilla, P. Patrızii, S.P. Deflippıs, G. Bonazzi, P. Mantovi, D. Barchi and L. Migliore, “Oxytetracycline as environmental contaminant in arable lands,” Analytical Chimica Acta, vol. 586, pp. 326-333, 2007. [4] S.C. Kim, and K. Carlson, “Temporal and Spatial Trends in the Occurrence of Human and Veterinary Antibiotics in Aqueous and River Sediment Matrices,” Environmetal Science and Technology, vol. 41, pp. 50-57, 2007. [5] N. Kemper, “Veterinary antibiotics in the aquatic and terrestrial environment,” Ecological Indicators, vol. 8, pp.1-13, 2008. [6] C.S. McArdell, E. Molnar, M.J.F. Suter, and W. Giger, “Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt valley watershed, Switzerland,” Environmental Science and Technology, vol. 37, pp. 5479-5486, 2003. [7] J.D. Magnussen, J.E. Dalidowicz, T.D. Thomson and A.L. Donoho, “Tissue residues and metabolism of avilamycin in swine and rats,” Journal Agricultural Food Chemistry, vol. 39, pp. 306-310, 1991. [8] A.B.A. Boxall, L.A. Fogg, P.A. Blackwell, P. Kay, E.J. Pemberton, and A. Croxford, “Veterinary medicines in the environment,” Review Environmental Contamination Toxicology, vol. 180, pp. 1-91, 2004. [9] L. Migliore, S. Cozzolino, and M. Fiori, “Phytotoxicity to and uptake of enrofloxacin in crop plants,” Chemosphere, vol. 52, pp. 1233-1244, 2003. [10] M. Adams, Y. Wang, K. Loftın, M. Meyer, “Removal Of Antibiotics From Surface and Distilled Water in Conventional Water Treatment Processes,” Asce Journal Environmental Engineering, vol. 128, pp. 253-265, 2002. [11] T.A. Ternes, M. Meisenheimer, D. Mcdowell, F. Sacher, H.J. Brauch, B. Haist-Gulde, G. Preuss, U. Wılme, and N. Zulei-Seıbert, “Removal of pharmaceuticals during drinking water treatment,” Environmental Science and Technology, vol. 36, pp. 3855-3863, 2002.
  • [12] S. Dultza, B. Riebeb, C. Bunnenberg, “Temperature effects on iodine adsorption on organo-clay minerals II. Structural effects,” Applied Clay Science, vol. 28, pp. 17–30, 2005.
  • [13] Ç. Öter, “Kromun zencefil tozu üzerine adsorpsiyon ile atık sulardan uzaklaştırılması,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 9, ss. 480-492, 2021.
  • [14] D.W. Ming, J.B. Dixon, “Quantitative determination of clinoptilolite in soils by a cation exchange capacity method,” Clays and Clay Minerals, vol. 35, pp. 463-468, 1987.
  • [15] C. Diaz-Nava, M.T. Olguin, M. Solache-Rios, “Water defluoridation by Mexican heulandite-clinoptilolite,” Separation Science and Technology, vol. 37, pp. 3109-3128, 2002.
  • [16] B.B. Sithole, R.D. Guy, “Models for tetracycline in aquatic environments. I. Interaction with bentonite systems,” Water, Air and Soil Pollution, vol. 32, pp. 303-314, 1987. [17] Z. Aksu, S. Tezer, “Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature,” Process Biochemistry, vol. 36, pp. 431-439, 2000. [18] Y.S. Ho, G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, pp. 451-465, 1999.
  • [19] D. Hritcu, D. Humelnicu, G. Dodi, M.L Popa, Magnetic chitosan composite particles: Evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydrate Polymers. vol. 87, pp. 1185– 1191, 2012.
  • [20] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science Technology. vol. 45, pp.10454–10462, 2011.
  • [21] J. M., Wessels, W.E. Ford, W. Szymczak, S. Schneider, “The Complexation Of Tetracycline And Anhydrotetracycline With Mg2+ And Ca2+: A Spectroscopic Study,” Journal of Physical Chemistry, vol. 102, pp. 9323-9331, 1998.
  • [22] M.O. Schmitt, S. Schneider, “Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+” Physical Chemical Communication, vol. 3, pp. 42-55, 2000.
  • [23] T.L. Terlaak, W.A. Gebbink, J. Tolls, “The effect of pH and ionic strength on the sorption of sulfachloropyridazin, tylosin and oxytetracycline to soil,” Environmental Toxicology and Chemistry, vol. 25, pp. 904-911, 2006.
  • [24] R.A. Figueroa, A. Leonard, A.A. Mackay, “Modeling tetracycline antibiotics sorption to clays,” Environmental Science and Technology, vol. 38, pp. 476-483, 2004. [25] C. Gu, K.G. Karthikeyan, “Interaction of tetracycline with aluminum and iron hydrous oxides,” Environmental Science and Technology, vol. 39, pp. 2660-2667, 2005.
  • [26] N.S. Simon, “Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay,” Environmental Science and Technology, vol. 39, pp. 3480-3487, 2005.

Sorption of Tetracycline Antibiotic on Zeolite

Yıl 2022, , 186 - 197, 31.01.2022
https://doi.org/10.29130/dubited.947152

Öz

In this study, the adsorption of widely used antibiotic, oxytetracycline (OTC) onto sodium (Na+) and hexadecyltrimethylammonium (HDTMA) modified zeolite was investigated. Adsorption studies were carried out at different OTC concentrations, initial pH’s, and adsorbent dosages. The adsorption isotherm data were fitted to Freundlich model. Antibiotic adsorption on HDTMA-zeolite exhibited stronger pH dependence and 90% antibiotic removal was achieved at pH 8 and maximum OTC adsorption of Na-zeolite 88% occurred at pH 6.5. The kinetic models including pseudo-first and second order were tested to determine adsorption model for kinetics. The effect of various ions on the adsorption of OTC by Na and HDTMA-zeolite was also investigated. While the presence of calcium, magnesium, phosphate, chloride, and sulfate ions lead to decrease the sorption of OTC onto Na and HDTMA- zeolite, bicarbonate ion lead to improve the adsorption of OTC on HDTMA-zeolite. NH4+ and OTC were simultaneously removed from water by Na-zeolite.

Proje Numarası

106Y073

Kaynakça

  • [1] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H. Buxton, “Pharmaceuticals, hormones and other organic wastewater contaminants in US streams,” Environmental Science and Technology, vol. 36, pp. 1202-1211, 2002. [2] E.M. Carballo, C.G. Barreıro, S. Scharf and O. Gans, “Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria,” Environmental Pollution, vol. 148, pp. 570-587, 2007. [3] G. Brambilla, P. Patrızii, S.P. Deflippıs, G. Bonazzi, P. Mantovi, D. Barchi and L. Migliore, “Oxytetracycline as environmental contaminant in arable lands,” Analytical Chimica Acta, vol. 586, pp. 326-333, 2007. [4] S.C. Kim, and K. Carlson, “Temporal and Spatial Trends in the Occurrence of Human and Veterinary Antibiotics in Aqueous and River Sediment Matrices,” Environmetal Science and Technology, vol. 41, pp. 50-57, 2007. [5] N. Kemper, “Veterinary antibiotics in the aquatic and terrestrial environment,” Ecological Indicators, vol. 8, pp.1-13, 2008. [6] C.S. McArdell, E. Molnar, M.J.F. Suter, and W. Giger, “Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt valley watershed, Switzerland,” Environmental Science and Technology, vol. 37, pp. 5479-5486, 2003. [7] J.D. Magnussen, J.E. Dalidowicz, T.D. Thomson and A.L. Donoho, “Tissue residues and metabolism of avilamycin in swine and rats,” Journal Agricultural Food Chemistry, vol. 39, pp. 306-310, 1991. [8] A.B.A. Boxall, L.A. Fogg, P.A. Blackwell, P. Kay, E.J. Pemberton, and A. Croxford, “Veterinary medicines in the environment,” Review Environmental Contamination Toxicology, vol. 180, pp. 1-91, 2004. [9] L. Migliore, S. Cozzolino, and M. Fiori, “Phytotoxicity to and uptake of enrofloxacin in crop plants,” Chemosphere, vol. 52, pp. 1233-1244, 2003. [10] M. Adams, Y. Wang, K. Loftın, M. Meyer, “Removal Of Antibiotics From Surface and Distilled Water in Conventional Water Treatment Processes,” Asce Journal Environmental Engineering, vol. 128, pp. 253-265, 2002. [11] T.A. Ternes, M. Meisenheimer, D. Mcdowell, F. Sacher, H.J. Brauch, B. Haist-Gulde, G. Preuss, U. Wılme, and N. Zulei-Seıbert, “Removal of pharmaceuticals during drinking water treatment,” Environmental Science and Technology, vol. 36, pp. 3855-3863, 2002.
  • [12] S. Dultza, B. Riebeb, C. Bunnenberg, “Temperature effects on iodine adsorption on organo-clay minerals II. Structural effects,” Applied Clay Science, vol. 28, pp. 17–30, 2005.
  • [13] Ç. Öter, “Kromun zencefil tozu üzerine adsorpsiyon ile atık sulardan uzaklaştırılması,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, c. 9, ss. 480-492, 2021.
  • [14] D.W. Ming, J.B. Dixon, “Quantitative determination of clinoptilolite in soils by a cation exchange capacity method,” Clays and Clay Minerals, vol. 35, pp. 463-468, 1987.
  • [15] C. Diaz-Nava, M.T. Olguin, M. Solache-Rios, “Water defluoridation by Mexican heulandite-clinoptilolite,” Separation Science and Technology, vol. 37, pp. 3109-3128, 2002.
  • [16] B.B. Sithole, R.D. Guy, “Models for tetracycline in aquatic environments. I. Interaction with bentonite systems,” Water, Air and Soil Pollution, vol. 32, pp. 303-314, 1987. [17] Z. Aksu, S. Tezer, “Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature,” Process Biochemistry, vol. 36, pp. 431-439, 2000. [18] Y.S. Ho, G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, pp. 451-465, 1999.
  • [19] D. Hritcu, D. Humelnicu, G. Dodi, M.L Popa, Magnetic chitosan composite particles: Evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydrate Polymers. vol. 87, pp. 1185– 1191, 2012.
  • [20] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science Technology. vol. 45, pp.10454–10462, 2011.
  • [21] J. M., Wessels, W.E. Ford, W. Szymczak, S. Schneider, “The Complexation Of Tetracycline And Anhydrotetracycline With Mg2+ And Ca2+: A Spectroscopic Study,” Journal of Physical Chemistry, vol. 102, pp. 9323-9331, 1998.
  • [22] M.O. Schmitt, S. Schneider, “Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+” Physical Chemical Communication, vol. 3, pp. 42-55, 2000.
  • [23] T.L. Terlaak, W.A. Gebbink, J. Tolls, “The effect of pH and ionic strength on the sorption of sulfachloropyridazin, tylosin and oxytetracycline to soil,” Environmental Toxicology and Chemistry, vol. 25, pp. 904-911, 2006.
  • [24] R.A. Figueroa, A. Leonard, A.A. Mackay, “Modeling tetracycline antibiotics sorption to clays,” Environmental Science and Technology, vol. 38, pp. 476-483, 2004. [25] C. Gu, K.G. Karthikeyan, “Interaction of tetracycline with aluminum and iron hydrous oxides,” Environmental Science and Technology, vol. 39, pp. 2660-2667, 2005.
  • [26] N.S. Simon, “Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay,” Environmental Science and Technology, vol. 39, pp. 3480-3487, 2005.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Aslı Şükriye Şalcıoğlu 0000-0002-5036-4246

Proje Numarası 106Y073
Yayımlanma Tarihi 31 Ocak 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Şalcıoğlu, A. Ş. (2022). Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu. Duzce University Journal of Science and Technology, 10(1), 186-197. https://doi.org/10.29130/dubited.947152
AMA Şalcıoğlu AŞ. Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu. DÜBİTED. Ocak 2022;10(1):186-197. doi:10.29130/dubited.947152
Chicago Şalcıoğlu, Aslı Şükriye. “Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu”. Duzce University Journal of Science and Technology 10, sy. 1 (Ocak 2022): 186-97. https://doi.org/10.29130/dubited.947152.
EndNote Şalcıoğlu AŞ (01 Ocak 2022) Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu. Duzce University Journal of Science and Technology 10 1 186–197.
IEEE A. Ş. Şalcıoğlu, “Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu”, DÜBİTED, c. 10, sy. 1, ss. 186–197, 2022, doi: 10.29130/dubited.947152.
ISNAD Şalcıoğlu, Aslı Şükriye. “Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu”. Duzce University Journal of Science and Technology 10/1 (Ocak 2022), 186-197. https://doi.org/10.29130/dubited.947152.
JAMA Şalcıoğlu AŞ. Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu. DÜBİTED. 2022;10:186–197.
MLA Şalcıoğlu, Aslı Şükriye. “Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu”. Duzce University Journal of Science and Technology, c. 10, sy. 1, 2022, ss. 186-97, doi:10.29130/dubited.947152.
Vancouver Şalcıoğlu AŞ. Tetrasiklin Antibiyotiğinin Zeolitte Adsorpsiyonu. DÜBİTED. 2022;10(1):186-97.