Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultraviyole stabilizatörlerin kauçuk esaslı otomotiv sızdırmazlık profilleri üzerindeki etkisi

Yıl 2018, Cilt: 6 Sayı: 1, 240 - 253, 31.01.2018
https://doi.org/10.29130/dubited.345138

Öz

Kapı, cam, kaput ve
bagaj gibi aracın görünür ve görünmez birçok bölgesinde kullanılan sızdırmazlık
profilleri; sentetik etilen propilen dien monomer (EPDM) kauçuktan
üretilmektedir. Etilen, propilen ve doymamış dien moleküllerinin bu
kombinasyonu, yüksek mekanik özellikler sergiler ve su geçirmez bir yapı
oluşturur. Güneş ışığına maruz kalan görünür bölgede kullanılan sızdırmaz
profillerin yüzeyinde, yüksek yoğunluklu ultraviyole (UV) radyasyonun ve güneş
ışığının etkisiyle, zamanla renk değişimi, çatlama ve lekelenme
gözlemlenebilir. Bu çalışmanın amacı, plastik endüstrisinde yaygın olarak
kullanılan UV stabilizatörlerin EPDM kauçuğunun UV dayanımına olan etkisini
araştırmaktır. UV stabilizatörleri, polimerde meydana gelen kimyasal bağ
kırılımı nedeni ile oluşan serbest radikaller ile tepkimeye girerek veya UV
ışımayı absorbe ederek polimeri UV ışınlarına karşı korur. Mevcut EPDM
formülasyonuna farklı tip ve farklı oranlarda UV stabilizatörler eklenerek EPDM
hamur plakaları oluşturulmuştur. UV stabilizatörlerin EPDM plakaları üzerindeki
etkileri; mekanik testler ve yüksek yoğunluklu güneş ışığı, yüksek yoğunluklu
UV ile yüksek sıcaklık/nem içeren iklim koşullarına sahip ve uluslararası
alanda tanınmış Florida açık hava yaşlanma testi ile ölçülmüştür.

Kaynakça

  • [1] Teisseidre G, Pilichowski JF, Chmela S, Lacoste J, “Ageing of epdm- i: Photo and thermal stability of epdm hydroperoxides,” Polym Degrad Stab, vol. 53, no. 2, pp. 207-215, 1996.
  • [2] Alagar M, Abdul Majeed SM, Selvaganapathi A, Gnanasundaram P, “Studies on thermal, thermal aging and morphological characteristics of EPDM-g-VTES/LLDPE,” Eur Polym J, vol. 42, no. 2, pp. 336-347, 2006.
  • [3] Yu L, Wang WJ, Xiao WD, “The effect of decabromodiphenyl oxide and antimony trioxide on the flame retardation of ethylene-propylene-diene copolymer/polypropylene blends,” Polym Degrad Stab, vol. 86, no. 1, pp. 69-73, 2004.
  • [4] Pinel B, Boutand F, “A methodology to predict the life duration of polymers used in nuclear power stations. Industrial needs and their approach,” Nucl Instrum Methods Phys Res Sect B, vol. 151, no. 1-4, pp. 471-476, 1999.
  • [5] Vieira I, Severgnini VLS, Mazera DJ, Soldi MS, Pinheiro EA, Pires ATN, “Effects of maleated ethylene propylene diene rubber (EPDM) on the thermal stability of pure polyamides, and polyamide/EPDM and polyamide/poly(ethylene teraphthalate) blends: kinetic parameters and reaction mechanism,” Polym Degrad Stab, vol. 74, no. 1, pp. 151-157, 2001.
  • [6] Tillier DL, Mesldijk J, Hohne G, Frederik PM, Regev O, Koning CE, “About morphology in ethylene-propylene(-diene) copolymers-based latexes,” Polymer, vol. 46, no. 18, pp. 7094-7108, 2005.
  • [7] Bhadane PA, Champagne MF, Huneault MA, Tofan F, Favis BD, “Continuity development in polymer blends of very low interfacial tension,” Polymer, vol. 47, no. 8, pp. 2760- 2771, 2006.
  • [8] Acharya H, Pramanik M, Srivastava SK, Bhowmick AK, “Synthesis and evaluation of high-performance ethylene–propylene–diene terpolymer/organoclay nanoscale composites,” J Appl Polym Sci, vol. 93, no. 5, pp. 2429-2436, 2004.
  • [9] Valentini L, Biagiotti J, Kenny JM, Manchade MAL, “Physical and mechanical behavior of single walled carbon nanotube/polypropylene/ethylene–propylene–diene rubber nanocomposites,” J Appl Polym Sci, vol. 89, no. 10, pp. 2657-2663, 2003.
  • [10] Wang Y, Zhang L, Tang C, Yu D, “Preparation and characterization of rubber-clay nanocomposites,” J Appl Polym Sci, vol. 78, no. 11, pp. 1879-1883, 2000.
  • [11] Arroyo M, Lopez-Manchado MA, Herrero B, “Organo-montmorillonite as substitute of carbon black in natural rubber compounds,” Polymer, vol. 44, no. 8, pp. 2447-2453, 2003.
  • [12] Goncalves Costa V, Celia Reis Nunes R, “Mechanical properties of blends of EPDM with NR-cellulose II system,” Eur Polym J, vol. 30, no. 9, pp. 1025-1028, 1994.
  • [13] Norbert, L. and Maecker, Duane Priddy, B, “Photodegradation of ethylene-propylene copolymer and ethylene-propylene-ethyldienenorbornene terpolymer,” J Appl Poly Sci, vol. 42, no. 1, pp. 21-33, 1991.
  • [14] Wypych, Georg “Effect of weathering on Elastomeric Materials”, Handbook of material weathering, 3rd Ed. 2003.
  • [15] Arnaud R, Lemaire J, Quemer J, Roche G, “Degradations photothermiques de polyethylenes reticules-I: Influence de noirs de carbone commerciaux,” Eur Polym J, vol.12, no. 8, pp. 499-504, 1976.
  • [16] McCrum NG, Buckley CP, Bucknall CB, “Principles of Polymer Engineering,” Oxford Science, New York; 1988.
  • [17] Feldman D, “Polymer Weathering: Photo oxidation,” J Polym Environ, vol. 10, no. 4, pp. 163-173, 2002.
  • [18] Kurumada T, Ohsawa H, Yamazaki T, “Synergism of hindered amine light stabilizers and UV-absorbers,” Poly. Degrad. Stab., vol. 19, no. 3, pp. 263-272, 1987.
  • [19] Scott G, “Developments in the photo-oxidation and photo-stabilization of polymers,” Poly. Degrad. Stab., vol. 10, no. 2, pp. 97-125, 1985.
  • [20] Leppard D, Hayoz P, Schafer T, Vogel T, Wendeborn F, “Light Stabilisers,” Chimia International Journal for Chemistry, vol. 56, no. 5, pp. 216-224, 2002.
  • [21] Paterson MJ, Robb MA, Blancaford L, DeBellis AD, “Theoretical Study of Benzotriazole UV Photostability: Ultrafast Deactivation through Coupled Proton and Electron Transfer Triggered by a Charge-Transfer State,” Journal of the American Chemical Society, vol. 126, no. 9, pp. 2912-2922, 2004.
  • [22] Maliakal A, Lem G, Turro NJ, Ravichandran R, Sugadolinik JC, Debellis AD, Wood MG, Lau J, “Twisted Intramolecular Charge Transfer States in 2-Arylbenzotriazoles: Fluorescence Deactivation via Intramolecular Electron Transfer Rather Than Proton Transfer,” The Journal of Physical Chemistry A, vol. 106, no. 34, pp. 7680-7689, 2002.
  • [23] Waiblinger F, Keck J, Stein M, Fluegge AP, Kramer HEA, Leppard D, “Light-Induced Opening of the Intramolecular Hydrogen Bond of UV Absorbers of the 2-(2-Hydroxyphenyl)-1,3,5-triazine and the 2-(2-Hydroxyphenyl) benzotriazole Type,” The Journal of Physical Chemistry A, vol. 104, no. 6, pp. 1100-1106, 2000.
  • [24] Suhadolnik FC, DeBellis AD, Hendricks-Guy C, Lyengar R, Wood MG, “Unexpected electronic effects on benzotriazole UV absorber photostability: Mechanistic implications beyond excited state intramolecular proton transfer,” Journal of Coatings Technology, vol. 924, no. 74, pp. 55- 61, 2002.
  • [25] McGarry PF, Jockush S, Fujiwara Y, Kaprinidis NA, Turro NJ, “DMSO Solvent Induced Photochemistry in Highly Photostable Compounds. The Role of Intermolecular Hydrogen Bonding,” The Journal of Physical Chemistry A, vol. 101, no. 5, pp. 764-767, 1997.
  • [26] Ginic-Markovic M, Choudhury NM, Dimopoulos M, Matisons JG, “Wheatherability of coated EPDM rubber compound by controlled UV irradiation,” Polymer Degradation and Stability, vol. 69, no. 2, pp. 157-168, 2000.
  • [27] Philip Jacoby, Vice President of Technology, Mayzo Inc., Norcross, GA.

Effect of ultraviolet stabilizers on rubber-based automotive sealing profiles

Yıl 2018, Cilt: 6 Sayı: 1, 240 - 253, 31.01.2018
https://doi.org/10.29130/dubited.345138

Öz

The sealing profiles for many visible
and invisible automotive applications such as doors, windows, hoods and trunks
are made of synthetic ethylene propylene diene monomer (EPDM) rubber. This
combination of ethylene, propylene and unsaturated diene molecules exhibits
high mechanical properties and forms a water-proof structure.  With the progress of time, color change,
cracking and staining can be observed on the surface of the sealing profiles
used on the visible regions exposed to the sun due to the effect of
high-intensity ultraviolet (UV) radiation and sunlight. The aim of this study
was to investigate the effect of the UV stabilizers widely used in the plastics
industry on the UV resistance of EPDM rubber. UV stabilizers protect the
polymers against to UV radiation by reacting with the free radicals that are
formed when a high energy UV photon causes a chemical bond in the polymer to
break or by absorbing potentially destructive UV radiation. Plates of EPDM
rubber were prepared by adding different types of UV stabilizers at different
rates to an available EPDM formula. The effects of the UV stabilizers on the
EPDM plates were measured by mechanical tests and the internationally
recognized Florida outdoor aging test with climate conditions of high-intensity
sunlight, high-intensity UV, and high temperature and humidity levels. 

Kaynakça

  • [1] Teisseidre G, Pilichowski JF, Chmela S, Lacoste J, “Ageing of epdm- i: Photo and thermal stability of epdm hydroperoxides,” Polym Degrad Stab, vol. 53, no. 2, pp. 207-215, 1996.
  • [2] Alagar M, Abdul Majeed SM, Selvaganapathi A, Gnanasundaram P, “Studies on thermal, thermal aging and morphological characteristics of EPDM-g-VTES/LLDPE,” Eur Polym J, vol. 42, no. 2, pp. 336-347, 2006.
  • [3] Yu L, Wang WJ, Xiao WD, “The effect of decabromodiphenyl oxide and antimony trioxide on the flame retardation of ethylene-propylene-diene copolymer/polypropylene blends,” Polym Degrad Stab, vol. 86, no. 1, pp. 69-73, 2004.
  • [4] Pinel B, Boutand F, “A methodology to predict the life duration of polymers used in nuclear power stations. Industrial needs and their approach,” Nucl Instrum Methods Phys Res Sect B, vol. 151, no. 1-4, pp. 471-476, 1999.
  • [5] Vieira I, Severgnini VLS, Mazera DJ, Soldi MS, Pinheiro EA, Pires ATN, “Effects of maleated ethylene propylene diene rubber (EPDM) on the thermal stability of pure polyamides, and polyamide/EPDM and polyamide/poly(ethylene teraphthalate) blends: kinetic parameters and reaction mechanism,” Polym Degrad Stab, vol. 74, no. 1, pp. 151-157, 2001.
  • [6] Tillier DL, Mesldijk J, Hohne G, Frederik PM, Regev O, Koning CE, “About morphology in ethylene-propylene(-diene) copolymers-based latexes,” Polymer, vol. 46, no. 18, pp. 7094-7108, 2005.
  • [7] Bhadane PA, Champagne MF, Huneault MA, Tofan F, Favis BD, “Continuity development in polymer blends of very low interfacial tension,” Polymer, vol. 47, no. 8, pp. 2760- 2771, 2006.
  • [8] Acharya H, Pramanik M, Srivastava SK, Bhowmick AK, “Synthesis and evaluation of high-performance ethylene–propylene–diene terpolymer/organoclay nanoscale composites,” J Appl Polym Sci, vol. 93, no. 5, pp. 2429-2436, 2004.
  • [9] Valentini L, Biagiotti J, Kenny JM, Manchade MAL, “Physical and mechanical behavior of single walled carbon nanotube/polypropylene/ethylene–propylene–diene rubber nanocomposites,” J Appl Polym Sci, vol. 89, no. 10, pp. 2657-2663, 2003.
  • [10] Wang Y, Zhang L, Tang C, Yu D, “Preparation and characterization of rubber-clay nanocomposites,” J Appl Polym Sci, vol. 78, no. 11, pp. 1879-1883, 2000.
  • [11] Arroyo M, Lopez-Manchado MA, Herrero B, “Organo-montmorillonite as substitute of carbon black in natural rubber compounds,” Polymer, vol. 44, no. 8, pp. 2447-2453, 2003.
  • [12] Goncalves Costa V, Celia Reis Nunes R, “Mechanical properties of blends of EPDM with NR-cellulose II system,” Eur Polym J, vol. 30, no. 9, pp. 1025-1028, 1994.
  • [13] Norbert, L. and Maecker, Duane Priddy, B, “Photodegradation of ethylene-propylene copolymer and ethylene-propylene-ethyldienenorbornene terpolymer,” J Appl Poly Sci, vol. 42, no. 1, pp. 21-33, 1991.
  • [14] Wypych, Georg “Effect of weathering on Elastomeric Materials”, Handbook of material weathering, 3rd Ed. 2003.
  • [15] Arnaud R, Lemaire J, Quemer J, Roche G, “Degradations photothermiques de polyethylenes reticules-I: Influence de noirs de carbone commerciaux,” Eur Polym J, vol.12, no. 8, pp. 499-504, 1976.
  • [16] McCrum NG, Buckley CP, Bucknall CB, “Principles of Polymer Engineering,” Oxford Science, New York; 1988.
  • [17] Feldman D, “Polymer Weathering: Photo oxidation,” J Polym Environ, vol. 10, no. 4, pp. 163-173, 2002.
  • [18] Kurumada T, Ohsawa H, Yamazaki T, “Synergism of hindered amine light stabilizers and UV-absorbers,” Poly. Degrad. Stab., vol. 19, no. 3, pp. 263-272, 1987.
  • [19] Scott G, “Developments in the photo-oxidation and photo-stabilization of polymers,” Poly. Degrad. Stab., vol. 10, no. 2, pp. 97-125, 1985.
  • [20] Leppard D, Hayoz P, Schafer T, Vogel T, Wendeborn F, “Light Stabilisers,” Chimia International Journal for Chemistry, vol. 56, no. 5, pp. 216-224, 2002.
  • [21] Paterson MJ, Robb MA, Blancaford L, DeBellis AD, “Theoretical Study of Benzotriazole UV Photostability: Ultrafast Deactivation through Coupled Proton and Electron Transfer Triggered by a Charge-Transfer State,” Journal of the American Chemical Society, vol. 126, no. 9, pp. 2912-2922, 2004.
  • [22] Maliakal A, Lem G, Turro NJ, Ravichandran R, Sugadolinik JC, Debellis AD, Wood MG, Lau J, “Twisted Intramolecular Charge Transfer States in 2-Arylbenzotriazoles: Fluorescence Deactivation via Intramolecular Electron Transfer Rather Than Proton Transfer,” The Journal of Physical Chemistry A, vol. 106, no. 34, pp. 7680-7689, 2002.
  • [23] Waiblinger F, Keck J, Stein M, Fluegge AP, Kramer HEA, Leppard D, “Light-Induced Opening of the Intramolecular Hydrogen Bond of UV Absorbers of the 2-(2-Hydroxyphenyl)-1,3,5-triazine and the 2-(2-Hydroxyphenyl) benzotriazole Type,” The Journal of Physical Chemistry A, vol. 104, no. 6, pp. 1100-1106, 2000.
  • [24] Suhadolnik FC, DeBellis AD, Hendricks-Guy C, Lyengar R, Wood MG, “Unexpected electronic effects on benzotriazole UV absorber photostability: Mechanistic implications beyond excited state intramolecular proton transfer,” Journal of Coatings Technology, vol. 924, no. 74, pp. 55- 61, 2002.
  • [25] McGarry PF, Jockush S, Fujiwara Y, Kaprinidis NA, Turro NJ, “DMSO Solvent Induced Photochemistry in Highly Photostable Compounds. The Role of Intermolecular Hydrogen Bonding,” The Journal of Physical Chemistry A, vol. 101, no. 5, pp. 764-767, 1997.
  • [26] Ginic-Markovic M, Choudhury NM, Dimopoulos M, Matisons JG, “Wheatherability of coated EPDM rubber compound by controlled UV irradiation,” Polymer Degradation and Stability, vol. 69, no. 2, pp. 157-168, 2000.
  • [27] Philip Jacoby, Vice President of Technology, Mayzo Inc., Norcross, GA.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sibel Dikmen Küçük

Doç. Dr. Hüsnü Gerengi

Yusuf Güner Bu kişi benim

Yayımlanma Tarihi 31 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Dikmen Küçük, S., Gerengi, D. D. H., & Güner, Y. (2018). Effect of ultraviolet stabilizers on rubber-based automotive sealing profiles. Duzce University Journal of Science and Technology, 6(1), 240-253. https://doi.org/10.29130/dubited.345138
AMA Dikmen Küçük S, Gerengi DDH, Güner Y. Effect of ultraviolet stabilizers on rubber-based automotive sealing profiles. DÜBİTED. Ocak 2018;6(1):240-253. doi:10.29130/dubited.345138
Chicago Dikmen Küçük, Sibel, Doç. Dr. Hüsnü Gerengi, ve Yusuf Güner. “Effect of Ultraviolet Stabilizers on Rubber-Based Automotive Sealing Profiles”. Duzce University Journal of Science and Technology 6, sy. 1 (Ocak 2018): 240-53. https://doi.org/10.29130/dubited.345138.
EndNote Dikmen Küçük S, Gerengi DDH, Güner Y (01 Ocak 2018) Effect of ultraviolet stabilizers on rubber-based automotive sealing profiles. Duzce University Journal of Science and Technology 6 1 240–253.
IEEE S. Dikmen Küçük, D. D. H. Gerengi, ve Y. Güner, “Effect of ultraviolet stabilizers on rubber-based automotive sealing profiles”, DÜBİTED, c. 6, sy. 1, ss. 240–253, 2018, doi: 10.29130/dubited.345138.
ISNAD Dikmen Küçük, Sibel vd. “Effect of Ultraviolet Stabilizers on Rubber-Based Automotive Sealing Profiles”. Duzce University Journal of Science and Technology 6/1 (Ocak 2018), 240-253. https://doi.org/10.29130/dubited.345138.
JAMA Dikmen Küçük S, Gerengi DDH, Güner Y. Effect of ultraviolet stabilizers on rubber-based automotive sealing profiles. DÜBİTED. 2018;6:240–253.
MLA Dikmen Küçük, Sibel vd. “Effect of Ultraviolet Stabilizers on Rubber-Based Automotive Sealing Profiles”. Duzce University Journal of Science and Technology, c. 6, sy. 1, 2018, ss. 240-53, doi:10.29130/dubited.345138.
Vancouver Dikmen Küçük S, Gerengi DDH, Güner Y. Effect of ultraviolet stabilizers on rubber-based automotive sealing profiles. DÜBİTED. 2018;6(1):240-53.