Araştırma Makalesi
BibTex RIS Kaynak Göster

Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu

Yıl 2018, Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017), 582 - 592, 10.04.2018

Öz

Binaya giren güneş
enerjisi miktarını kontrol etmek, binaların enerji ihtiyaçlarını azaltmak
küresel ısınmaya karşı mücadele etmede alınabilecek önlemlerdir. Bu amaçla,
pencereler enerji tasarrufu üzerinde etkili olan özel ince film ile
kaplanmıştır. Seralar, güneşten koruyucular,  
konutlar, ofisler ve otomobillerin ön camları da dahil olmak üzere
akıllı kaplamaların çok fazla uygulama alanı vardır. Bu gibi kaplamaların
geliştirilmesi, çevresel faydalar sağlayarak enerji maliyetlerinde önemli
tasarruf sağlar [1]. Araştırmalar yeni nesil malzemelerin geliştirilmesine yol açmıştır.
Malzeme teknolojisindeki gelişmeler, "akıllı malzeme" teriminin
sıcaklık, ışık gibi bazı koşullara istenen yanıtı vermesine neden olan ek
işlevler kazanmıştır. Değişen sıcaklığa bağlı optik özellikleri değiştirerek
ışık ve ısı enerjisini kontrol eden yeni nesil termokromik akıllı camları
üretme konusunda gelişme vardır. Bu çalışmada, özellikle inşaat sektöründe
kullanılan dışa bağımlılığı azaltacak, uluslararası düzeyde rekabet
edebilirliği artıran ve enerji verimliliğini destekleyecek uygulamalar için
yenilikçi kaplama malzemeleri geliştirilmesi amaçlanmaktadır. 33°C’de yeşil,
45°C’de siyah ve 65°C’de mavi renk değiştiren termokromik pigmentlerin tane
boyutu ölçülmüş ve TG / DTA analizleri gerçekleştirilmiştir. Pigmentler USB
dijital mikroskop ile incelenmiştir ve renk ölçümleri spektrofotometre kullanılarak
yapılmıştır. Termokromik pigmentlerin artan ve azalan sıcaklık ile renk
değişimi infrared termometre ile incelenmiştir. Karakterizasyon çalışmaları X-ışını
kırınım analizi ve taramalı elektron mikroskobu analiz teknikleri ile
gerçekleştirilmiştir. 

Kaynakça

  • [1] M. Kamalisarvestani, R. Saidur, S. Mekhilef, F. Javadi, "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, vol. 26, pp. 353-364, 2013.
  • [2] C. S. Blackman, C. Piccirillo, R. Binions, I.P. Parkin, "Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing," Thin Solid Films, vol. 517, pp. 4565-4570, 2009.
  • [3] Y. Ma, X. Zhang, B. Zhu, K. Wu, "Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings," Solar Energy, vol. 72, pp. 511-520, 2002.
  • [4] Y. Ma, B. Zhu, K. Wu, "Preparation and solar reflectance spectra of chameleon-type building coatings," Solar energy, 70, pp. 417-422, 2001. [5] A. D. McNaught, A. D. McNaught, Compendium of chemical terminology, Oxford, England:Blackwell Science, 1997.
  • [6] T. Chang, X. Cao, L.R. Dedon, S. Long, A. Huang, Z. Shao, N. Li, H. Luo, P. Jin, "Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings," Nano Energy, vol. 44, pp. 256-264, 2018.
  • [7] A. Paone, M. Geiger, R. Sanjines, A. Schüler, "Thermal solar collector with VO2 absorber coating and V1-xWxO2 thermochromic glazing-Temperature matching and triggering," Solar Energy, vol. 110, pp. 151-159, 2014.
  • [8] W. Li, S. Ji, K. Qian, P. Jin, "Preparation and characterization of VO2–BaSO4 composite films with enhanced optical properties in thermochromic field," Ceramics International, vol. 41, pp. 5049-5056, 2015.
  • [9] A. Paone, R. Sanjines, P. Jeanneret, A. Schüler, "Temperature-dependent multiangle FTIR NIR–MIR ellipsometry of thermochromic VO2 and V1− xWxO2 films," Solar Energy, vol. 118, pp. 107-116, 2015.
  • [10] L. Long, H. Ye, H. Zhang, Y. Gao, "Performance demonstration and simulation of thermochromic double glazing in building applications," Solar Energy, vol. 120, pp. 55-64, 2015.
  • [11] G. T. Pan, Y. L. Yang, S. Chong, N. Arjun, T. C. K. Yang, Y C. Lai, "The durability study of thermochromic vanadium dioxide films with the addition of barrier coatings," Vacuum, vol. 145, 158-168, 2017.
  • [12] S.-E. Chen, H.-H. Lu, S. Brahma, J.-L. Huang, "Effects of annealing on thermochromic properties of W-doped vana dium dioxide thin films deposited by electron beam evaporation," Thin Solid Films, vol. 644, pp. 52-56, 2017. [13] S. Kumar, F. Maury, N. Bahlawane, "Tunable thermochromic properties of V2O5 coatings," Materials Today Physics, vol. 2, pp. 1-5, 2017. [14] X. Yu, J. Hu, "Thermochromic coatings, films and materials for thermal management," USA. Patent Application no. 15/094, 135.
  • [15] L. Hu, H. Tao, G. Chen, R. Pan, M. Wan, D. Xiong, X. Zhao, "Porous W-doped VO2 films with simultaneously enhanced visible transparency and thermochromic properties," Journal of Sol-Gel Science and Technology, vol. 77, pp. 85-93, 2016.
  • [16] Y. Y. Chen, W. C. J. Wei, "Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive," Journal of the European Ceramic Society, vol. 21, pp. 2535-2540, 2001.
  • [17] H. Kozuka, M. Kajimura, T. Hirano, K. Katayama, "Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent," Journal of Sol-Gel Science and Technology, vol. 19, pp. 205-209, 2000.
  • [18] D. Aitken, S. Burkinshaw, J. Griffiths, A. Towns, "Textile applications of thermochromic systems," Coloration Technology, vol. 26, pp. 1-8, 1996.
  • [19] D. C. MacLaren, M. A. White, "Dye–developer interactions in the crystal violet lactone–lauryl gallate binary system: implications for thermochromism," Journal of Materials Chemistry, vol. 13, pp. 1695-1700, 2003.
  • [20] G. D. White, D. A. Zartman, J. M. Bonicamp, "A serious look at changeable silly putty," The Chemical Educator, vol. 5, pp. 2-7, 2000.
  • [21] M. A. White, M. LeBlanc, "Thermochromism in commercial products," J. Chem. Educ, vol. 76, pp. 1201, 1999.
  • [22] D. Li, Y. Shan, F. Huang, S. Ding, "Sol–gel preparation and characterization of SiO2 coated VO2 films with enhanced transmittance and high thermochromic performance," Applied Surface Science, vol. 317, pp. 160-166, 2014.

Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu

Yıl 2018, Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017), 582 - 592, 10.04.2018

Öz

Controlling the
amount of solar energy entering the building, reducing the energy needs of
buildings is a measure that can be taken to combat global warming. For this
purpose, the windows are covered with special thin film which is effective on
energy conservation. There are a lot of application for intelligent coatings,
including greenhouses, sun protectors, housing, offices and automobile
windshields. The development of such coatings provides environmental benefits
leading to considerable savings in energy costs [1]. Researches have led to the
development of new generation materials. Developments in materials technology
gained extra functions that cause the term "intelligent material" to
give the desired response to some conditions such as temperature, light, etc.
Improving on produce a new generation of thermochromic intelligent glasses that
control the light and heat energy by changing the optical properties depending
on the changing temperature. In this study, it is aimed to develop innovative
coating materials for applications which will reduce external dependence on
glass used especially in the construction sector, increase competitiveness at
international level and support energy efficiency. The grain size of the
thermochromic pigments, which change color at 33°C green, black at 45°C, and
blue at 65°C, were measured and TG/DTA analyzes were carried out. Pigments were
examined with USB digital microscope and color measurements were made using
spectrophotometer. The color change of thermochromic pigments with increasing
and decreasing temperature was examined by infrared thermometer. Characterization
studies were carried out by X-ray diffraction analysis and scanning electron
microscopy analysis techniques. 

Kaynakça

  • [1] M. Kamalisarvestani, R. Saidur, S. Mekhilef, F. Javadi, "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, vol. 26, pp. 353-364, 2013.
  • [2] C. S. Blackman, C. Piccirillo, R. Binions, I.P. Parkin, "Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing," Thin Solid Films, vol. 517, pp. 4565-4570, 2009.
  • [3] Y. Ma, X. Zhang, B. Zhu, K. Wu, "Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings," Solar Energy, vol. 72, pp. 511-520, 2002.
  • [4] Y. Ma, B. Zhu, K. Wu, "Preparation and solar reflectance spectra of chameleon-type building coatings," Solar energy, 70, pp. 417-422, 2001. [5] A. D. McNaught, A. D. McNaught, Compendium of chemical terminology, Oxford, England:Blackwell Science, 1997.
  • [6] T. Chang, X. Cao, L.R. Dedon, S. Long, A. Huang, Z. Shao, N. Li, H. Luo, P. Jin, "Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings," Nano Energy, vol. 44, pp. 256-264, 2018.
  • [7] A. Paone, M. Geiger, R. Sanjines, A. Schüler, "Thermal solar collector with VO2 absorber coating and V1-xWxO2 thermochromic glazing-Temperature matching and triggering," Solar Energy, vol. 110, pp. 151-159, 2014.
  • [8] W. Li, S. Ji, K. Qian, P. Jin, "Preparation and characterization of VO2–BaSO4 composite films with enhanced optical properties in thermochromic field," Ceramics International, vol. 41, pp. 5049-5056, 2015.
  • [9] A. Paone, R. Sanjines, P. Jeanneret, A. Schüler, "Temperature-dependent multiangle FTIR NIR–MIR ellipsometry of thermochromic VO2 and V1− xWxO2 films," Solar Energy, vol. 118, pp. 107-116, 2015.
  • [10] L. Long, H. Ye, H. Zhang, Y. Gao, "Performance demonstration and simulation of thermochromic double glazing in building applications," Solar Energy, vol. 120, pp. 55-64, 2015.
  • [11] G. T. Pan, Y. L. Yang, S. Chong, N. Arjun, T. C. K. Yang, Y C. Lai, "The durability study of thermochromic vanadium dioxide films with the addition of barrier coatings," Vacuum, vol. 145, 158-168, 2017.
  • [12] S.-E. Chen, H.-H. Lu, S. Brahma, J.-L. Huang, "Effects of annealing on thermochromic properties of W-doped vana dium dioxide thin films deposited by electron beam evaporation," Thin Solid Films, vol. 644, pp. 52-56, 2017. [13] S. Kumar, F. Maury, N. Bahlawane, "Tunable thermochromic properties of V2O5 coatings," Materials Today Physics, vol. 2, pp. 1-5, 2017. [14] X. Yu, J. Hu, "Thermochromic coatings, films and materials for thermal management," USA. Patent Application no. 15/094, 135.
  • [15] L. Hu, H. Tao, G. Chen, R. Pan, M. Wan, D. Xiong, X. Zhao, "Porous W-doped VO2 films with simultaneously enhanced visible transparency and thermochromic properties," Journal of Sol-Gel Science and Technology, vol. 77, pp. 85-93, 2016.
  • [16] Y. Y. Chen, W. C. J. Wei, "Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive," Journal of the European Ceramic Society, vol. 21, pp. 2535-2540, 2001.
  • [17] H. Kozuka, M. Kajimura, T. Hirano, K. Katayama, "Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent," Journal of Sol-Gel Science and Technology, vol. 19, pp. 205-209, 2000.
  • [18] D. Aitken, S. Burkinshaw, J. Griffiths, A. Towns, "Textile applications of thermochromic systems," Coloration Technology, vol. 26, pp. 1-8, 1996.
  • [19] D. C. MacLaren, M. A. White, "Dye–developer interactions in the crystal violet lactone–lauryl gallate binary system: implications for thermochromism," Journal of Materials Chemistry, vol. 13, pp. 1695-1700, 2003.
  • [20] G. D. White, D. A. Zartman, J. M. Bonicamp, "A serious look at changeable silly putty," The Chemical Educator, vol. 5, pp. 2-7, 2000.
  • [21] M. A. White, M. LeBlanc, "Thermochromism in commercial products," J. Chem. Educ, vol. 76, pp. 1201, 1999.
  • [22] D. Li, Y. Shan, F. Huang, S. Ding, "Sol–gel preparation and characterization of SiO2 coated VO2 films with enhanced transmittance and high thermochromic performance," Applied Surface Science, vol. 317, pp. 160-166, 2014.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Lale Civan

Semra Kurama Bu kişi benim

Erhan Ayas Bu kişi benim

Yayımlanma Tarihi 10 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017)

Kaynak Göster

APA Civan, L., Kurama, S., & Ayas, E. (2018). Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu. Duzce University Journal of Science and Technology, 6(3), 582-592.
AMA Civan L, Kurama S, Ayas E. Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu. DÜBİTED. Nisan 2018;6(3):582-592.
Chicago Civan, Lale, Semra Kurama, ve Erhan Ayas. “Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu”. Duzce University Journal of Science and Technology 6, sy. 3 (Nisan 2018): 582-92.
EndNote Civan L, Kurama S, Ayas E (01 Nisan 2018) Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu. Duzce University Journal of Science and Technology 6 3 582–592.
IEEE L. Civan, S. Kurama, ve E. Ayas, “Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu”, DÜBİTED, c. 6, sy. 3, ss. 582–592, 2018.
ISNAD Civan, Lale vd. “Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu”. Duzce University Journal of Science and Technology 6/3 (Nisan 2018), 582-592.
JAMA Civan L, Kurama S, Ayas E. Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu. DÜBİTED. 2018;6:582–592.
MLA Civan, Lale vd. “Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu”. Duzce University Journal of Science and Technology, c. 6, sy. 3, 2018, ss. 582-9.
Vancouver Civan L, Kurama S, Ayas E. Termokromik Malzemelerin Kaplama Malzemesi Olarak Karakterizasyonu. DÜBİTED. 2018;6(3):582-9.