Araştırma Makalesi
BibTex RIS Kaynak Göster

The Investigation of Structural Properties of ConPdm and ConAum Metal Nanoalloys Supported on MgO(001) Surface

Yıl 2018, Cilt: 6 Sayı: 4, 791 - 807, 01.08.2018
https://doi.org/10.29130/dubited.396582

Öz

In this study, structural properties of all compositions of ConPdm(n+m=100) and ConAum(n+m=100) bimetallic nanoalloys have been investigated in the range 10-90 at.%Co. Global minimum(GM) structures of bimetallic nanoalloys have been examined by Basin-Hopping optimization method. Gupta many body potential energy function has been used for investigation of interatomic interactions. The similarities and differences in the structural properties caused by Au and Pd atoms of optimized ConPdm and ConAum bimetallic nanoalloys on the
MgO(001) surface have been investigated. In addition, the epitaxial properties of nanoalloys on MgO(001) surface have been discussed.

Kaynakça

  • [1] M.L. Wu, L.B. Lai ‘’Synthesis of Pt/Ag Bimetallic Nanoparticles in Water-in-Oil Microemulsions,’’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 244, no. (1-3), pp. 149-157, 2004.
  • [2] J. Kaiser, “Structural and Catalytic Analysis of Gold-Palladium Composite Nanoalloys” PhD Thesis, Chemistry, Berlin Humboldt University, Berlin, Germany, 2012.
  • [3] D. Astruc, Nanoparticles and Catalysis, 1st ed., Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 639.
  • [4] C. Q. Sun, “Size dependence of nanostructures: Impact of bond order deficiency,” Progress in Solid State Chemistry, vol. 35, pp. 1-159, 2007.
  • [5] E. Roduner, “Size matters: why nanomaterials are different,” Chemical Society Reviews, vol. 35 pp. 583-592, 2006.
  • [6] L. V. Redel, Y. Y. Gafner and S. L. Gafner, “Role Of Magic Numbers In Structure Formation In Small Silver Nanoclusters,” Physics of the Solid State, vol. 57, no.10, pp. 2117-2125, 2015.
  • [7] J. P. Wilcoxon and B. L. Abrams, “Synthesis, structure and properties of metal nanoclusters,” Chemical Society Reviews, vol. 35, pp. 1162-1194, 2006. [8] R. Ferrando, J. Jellinek and R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, vol.108, no. 3, pp. 846-910, 2008. [9] A. L. Gould, C. J. Heard, A. J. Logsdail and C. R. A. Catlow, “Segregation Effects On The Properties Of (AuAg)147,” Physical Chemistry Chemical Physics, vol.16, pp. 21049-21061, 2014. [10] O. Lechner, “Spectroscopic Investigation of Zeolite Supported PdAg and PtAg Bimetallic Clusters,” PhD Thesis, Chemistry, Stuttgart University, Stuttgart, Germany, 2012. [11] F. H. B. Lima, J. F. R. de Castro and E. A. Ticianelli, “Silver-cobalt bimetallic particles for oxygen reduction in alkaline media,” Journal of Power Sources, vol.161, no. 2, pp. 806-812, 2006. [12] K. Shin, D. H. Kim, S. C. Yeo and H. M Lee, “Structural stability of Ag-Cu bimetallic nanoparticles and their application as a catalyst: a dft study,” Catalysis Today, vol.185, no.1, pp.94-98, 2012. [13] J. Zhang, K. Sasaki, E. Sutter and R.R. Adzic, “Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters,” Science, vol. 315, no. 5809, pp. 220-222, 2007. [14] G. Selvarani, S. V. Selvaganesh, S. Krishnamurthy, G. V. M. Kiruthika, P. Sridhar, S. Pitchumani and A. K. Shuckla, “ A methanol-tolerant carbon-supported Pt-Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT,” J. Phys. Chem. C, vol.113, pp. 7461-7468, 2009. [15] B. L. Abrams, P. C. K. Vesborg, J. L. Bonde, T. F. Jaramillo and I. Chorkendorff, “Dynamics of surface exchange reactions between Au and Pt for her and hor,” Journal of the. Electrochemical Society. ,vol. 156, no. 2, pp. B273-B282, 2009. [16] J. A. Toledo-Antonio, A. Chavez, M. A. Cortes- Jacome, I. Cuauhtemoc-Lopez, E. Lopez-Salinas, M. Perez-Luna and G. Ferrat-Torres, “ Highly dispersed Pt-Ir nanoparticles on titania nanotubes,” Applied Catalysis A: General, vol. 437-438, pp. 155-165, 2012. [17] Y. Mahara, H. Ishikawa, J. Ohyama, K. Sawabe, Y. Yamamoto, S. Arai and A. Satsuma, “Enhanced CO oxidation activity of Ni@Ag core-shell nanoparticles,” Chemistry Letters, vol. 43, no. 6, pp. 910-912, 2014. [18] R. Ferrando, “Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles,” Journal of Physics: Condensed Matter, vol. 27, pp. 013003-013038, 2015. [19] L. Guczi, “Bimetallic nano-particles: featuring structure and reactivity,” Catalysis Today, vol. 101, no. 2, pp. 53-64, 2005. [20] R. İsmail, R. Ferrando and R. L. Johnston, “Theoretical Study of the Structures and Chemical Ordering of Palladium-Gold Nanoalloys Supported on MgO(001,” The Journal of Physical Chemistry C, vol. 117, pp: 293-301, 2013. [21] R. Ferrando, G. Rossi, F. Nita, G. Barcaro and A. Fortunelli , “Interface-Stabilized Phases of Metal-on-Oxide Nanodots,” American Chemical Society Nano, vol. 2, no. 9, pp. 849-1856, 2008. [22] G. Barcaro and A. Fortunelli, “A study of bimetallic Cu-Ag, Au-Ag and Pd-Ag clusters adsorbed on a double-vacancy-defected MgO(100) terrace,” Faraday Discussions, vol. 138, pp. 37-47, 2008. [23] G. Barcaro, R. Ferrando, A. Fortunelli and G. Rossi, “Exotic Supported CoPt Nanostructures: From Clusters to Wires,” The Journal of Physical Chemistry Letters, vol.1, no.1, pp.111-115, 2010. [24] R. Ferrando, G. Rossi, A. C. Levi, Z. Kuntova, F. Nita, A. Jelea, C. Mottet, G. Barcaro, A. Fortunelli and J. Goniakowski, “Structures of metal nanoparticles adsorbed on MgO(001). I. Ag and Au,” Journal of Chemıcal Physıcs, vol. 130, no. 7, pp. 174702, 2009.
  • [25] S. Taran, A. K. Garip and H. Arslan, “Theoretical study of the structures andd chemical ordering of CoPd nanoalloys supported on MgO(001),” International Journal of Modern Physics C, vol. 27, no. 12, pp. 1650146(1-12), 2016.
  • [26] R. P. Gupta, “Lattice relaxation at a metal surface,” Physical Review B, vol.23, pp. 6265-6270, 1981.
  • [27] F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Physical Review B, vol. 48, no. 1, pp. 22-33, 1993.
  • [28] R. P. Gupta, “Electronic-Structure Of Crystalline And Amorphous-Silicon Dioxide,” Physical Review B, vol. 32, no.12, pp. 8278-8292, 1985.
  • [29] W. Vervisch, C. Mottet and J. Goniakowski, “Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface,” Physical Review B, vol. 65, no. 24, pp. 245411(1-12), 2002.
  • [30] F. Cyrot-Lackmann and F. Ducastelle, “Binding energies of transition-metal atoms adsorbed on a transition metal,” Physical Review B, vol. 4, pp. 6265, 1971.
  • [31] V. Rosato, M. Guillope, B. Legrand, “Thermodynamic and structural properties of f.c.c. transition metals using a simple tight-binding model,” Philosophical Magazine A, vol. 59, no. 2, pp. 321-336, 1989.
  • [32] D. Bochiccio, R. Ferrando, E. Panizon and G. Rossi, “Structures and segragation patterns of Ag-Cu and Ag-Ni nanoalloys adsorbed on MgO(001),” Journal of Physics: Condensed Matter, vol. 28, pp. 064005-1 - 064005-13, 2016.
  • [33] F. R. Negreiros, G. Barcaro, Z. Kuntova, G. Rossi, R. Ferrando, A. Fortunelli, “Structures of AgPd nanoclusters adsorbed on MgO(100): A computational study,” Surface Science, vol. 605, pp. 483-488, 2011.
  • [34] H. Arslan, A. K. Garip and R. L. Johnston, “Theoretical study of the structures and chemical ordering of cobalt-palladium nanoclusters,” Physical Chemistry Chemical Physics, vol.17, pp. 28311-28321, 2015.
  • [35] C. Goyhenex, H. Bulou, J.P. Deville, G. Treglia, “Pt/Co (0001) superstructures in the submonolayer range: A tight-binding quenched-molecular-dynamics study,” Physical Review B, vol. 60, pp. 2781-2788, 1999.
  • [36] S. Rives, A. Catherinot, F. Dumas-Bouchiat, C. Champeaux, A. Videcoq and R. Ferrando, “Growth of Co isolated clusters in the gas phase: Experiment and molecular Dynamics simulations,” Physical Review B, vol. 77, pp. 85407, 2008.
  • [37] H. G. Kim, S. K. Choi and H. M. Lee, “New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters,” The Journal of Chemical Physics, vol.128, no. 14, pp. 144702(1-4), 2008.
  • [38] S. Taran, “Metal nanoalaşımların MgO(001) yüzeyi üzerinde yapısal ve dinamik özelliklerinin simülasyon yöntemiyle incelenmesi,” Doktora tezi, Fizik Bölümü, Bülent Ecevit Üniversitesi, Zonguldak, Türkiye, 2017.
  • [39] T. Bingöl, “Lennard-Jones İkili Atom Yığınlarının Yapısal ve Termodinamik Özelliklerinin Monte Carlo Metoduyla İncelenmesi,” Yüksek Lisans Tezi, Fizik Bölümü, Zonguldak Karaelmas Üniversitesi, Zonguldak, Türkiye, 2008.
  • [40] A. Stukowski, “Structure identification methods for atomistic simulations of crystalline materials,” Modelling and Simulation in Material Science and Engineering, vol. 20, pp. 045021, 2012.
  • [41] S. Taran ve H. Arslan, “MgO(001) Yüzeyi Üzerinde Desteklenen AuN, PdN ve 1:1 Oranına Sahip (AuPd)N (N=50, 100, 150, 200) Nano Atom Yığınlarının Yapısal Özellikleri,” Karaelmas Fen ve Mühendislik Dergisi, c.7, s. 2, ss. 476-484, 2017.

ConPdm ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi

Yıl 2018, Cilt: 6 Sayı: 4, 791 - 807, 01.08.2018
https://doi.org/10.29130/dubited.396582

Öz

Bu
çalışmada, MgO(001) yüzeyi
üzerinde desteklenen
ConAum(n+m=100)  ve ConPdm(n+m=100) ikili
metal nanoalaşımlarda Co atom
oranının  %10 ile %90 arasında
değiştirilmesi sonucu
her bir kompozisyonun yapısal özellikleri incelenmiştir. İkili metal
nanoalaşımların global minimum(GM) yapıları Basin-Hopping optimizasyon yöntemi
ile elde edilmiştir. Atomlar arası etkileşmeleri inceleyebilmek için Gupta çok
cisim potansiyel enerji fonksiyonu kullanılmıştır. Optimizasyonu yapılan
ConAum
ve ConPdmikili
metal nanoalaşımların MgO(001) yüzeyi üzerindeki yapısal özelliklerinde Au ve
Pd atomlarının sebep olduğu benzerlik ve farklılıklar incelenmiştir. Ayrıca, nanoalaşımların
yüzey üzerindeki epitaksiyel yerleşimleri de ele alınmıştır.

Kaynakça

  • [1] M.L. Wu, L.B. Lai ‘’Synthesis of Pt/Ag Bimetallic Nanoparticles in Water-in-Oil Microemulsions,’’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 244, no. (1-3), pp. 149-157, 2004.
  • [2] J. Kaiser, “Structural and Catalytic Analysis of Gold-Palladium Composite Nanoalloys” PhD Thesis, Chemistry, Berlin Humboldt University, Berlin, Germany, 2012.
  • [3] D. Astruc, Nanoparticles and Catalysis, 1st ed., Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 639.
  • [4] C. Q. Sun, “Size dependence of nanostructures: Impact of bond order deficiency,” Progress in Solid State Chemistry, vol. 35, pp. 1-159, 2007.
  • [5] E. Roduner, “Size matters: why nanomaterials are different,” Chemical Society Reviews, vol. 35 pp. 583-592, 2006.
  • [6] L. V. Redel, Y. Y. Gafner and S. L. Gafner, “Role Of Magic Numbers In Structure Formation In Small Silver Nanoclusters,” Physics of the Solid State, vol. 57, no.10, pp. 2117-2125, 2015.
  • [7] J. P. Wilcoxon and B. L. Abrams, “Synthesis, structure and properties of metal nanoclusters,” Chemical Society Reviews, vol. 35, pp. 1162-1194, 2006. [8] R. Ferrando, J. Jellinek and R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, vol.108, no. 3, pp. 846-910, 2008. [9] A. L. Gould, C. J. Heard, A. J. Logsdail and C. R. A. Catlow, “Segregation Effects On The Properties Of (AuAg)147,” Physical Chemistry Chemical Physics, vol.16, pp. 21049-21061, 2014. [10] O. Lechner, “Spectroscopic Investigation of Zeolite Supported PdAg and PtAg Bimetallic Clusters,” PhD Thesis, Chemistry, Stuttgart University, Stuttgart, Germany, 2012. [11] F. H. B. Lima, J. F. R. de Castro and E. A. Ticianelli, “Silver-cobalt bimetallic particles for oxygen reduction in alkaline media,” Journal of Power Sources, vol.161, no. 2, pp. 806-812, 2006. [12] K. Shin, D. H. Kim, S. C. Yeo and H. M Lee, “Structural stability of Ag-Cu bimetallic nanoparticles and their application as a catalyst: a dft study,” Catalysis Today, vol.185, no.1, pp.94-98, 2012. [13] J. Zhang, K. Sasaki, E. Sutter and R.R. Adzic, “Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters,” Science, vol. 315, no. 5809, pp. 220-222, 2007. [14] G. Selvarani, S. V. Selvaganesh, S. Krishnamurthy, G. V. M. Kiruthika, P. Sridhar, S. Pitchumani and A. K. Shuckla, “ A methanol-tolerant carbon-supported Pt-Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT,” J. Phys. Chem. C, vol.113, pp. 7461-7468, 2009. [15] B. L. Abrams, P. C. K. Vesborg, J. L. Bonde, T. F. Jaramillo and I. Chorkendorff, “Dynamics of surface exchange reactions between Au and Pt for her and hor,” Journal of the. Electrochemical Society. ,vol. 156, no. 2, pp. B273-B282, 2009. [16] J. A. Toledo-Antonio, A. Chavez, M. A. Cortes- Jacome, I. Cuauhtemoc-Lopez, E. Lopez-Salinas, M. Perez-Luna and G. Ferrat-Torres, “ Highly dispersed Pt-Ir nanoparticles on titania nanotubes,” Applied Catalysis A: General, vol. 437-438, pp. 155-165, 2012. [17] Y. Mahara, H. Ishikawa, J. Ohyama, K. Sawabe, Y. Yamamoto, S. Arai and A. Satsuma, “Enhanced CO oxidation activity of Ni@Ag core-shell nanoparticles,” Chemistry Letters, vol. 43, no. 6, pp. 910-912, 2014. [18] R. Ferrando, “Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles,” Journal of Physics: Condensed Matter, vol. 27, pp. 013003-013038, 2015. [19] L. Guczi, “Bimetallic nano-particles: featuring structure and reactivity,” Catalysis Today, vol. 101, no. 2, pp. 53-64, 2005. [20] R. İsmail, R. Ferrando and R. L. Johnston, “Theoretical Study of the Structures and Chemical Ordering of Palladium-Gold Nanoalloys Supported on MgO(001,” The Journal of Physical Chemistry C, vol. 117, pp: 293-301, 2013. [21] R. Ferrando, G. Rossi, F. Nita, G. Barcaro and A. Fortunelli , “Interface-Stabilized Phases of Metal-on-Oxide Nanodots,” American Chemical Society Nano, vol. 2, no. 9, pp. 849-1856, 2008. [22] G. Barcaro and A. Fortunelli, “A study of bimetallic Cu-Ag, Au-Ag and Pd-Ag clusters adsorbed on a double-vacancy-defected MgO(100) terrace,” Faraday Discussions, vol. 138, pp. 37-47, 2008. [23] G. Barcaro, R. Ferrando, A. Fortunelli and G. Rossi, “Exotic Supported CoPt Nanostructures: From Clusters to Wires,” The Journal of Physical Chemistry Letters, vol.1, no.1, pp.111-115, 2010. [24] R. Ferrando, G. Rossi, A. C. Levi, Z. Kuntova, F. Nita, A. Jelea, C. Mottet, G. Barcaro, A. Fortunelli and J. Goniakowski, “Structures of metal nanoparticles adsorbed on MgO(001). I. Ag and Au,” Journal of Chemıcal Physıcs, vol. 130, no. 7, pp. 174702, 2009.
  • [25] S. Taran, A. K. Garip and H. Arslan, “Theoretical study of the structures andd chemical ordering of CoPd nanoalloys supported on MgO(001),” International Journal of Modern Physics C, vol. 27, no. 12, pp. 1650146(1-12), 2016.
  • [26] R. P. Gupta, “Lattice relaxation at a metal surface,” Physical Review B, vol.23, pp. 6265-6270, 1981.
  • [27] F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Physical Review B, vol. 48, no. 1, pp. 22-33, 1993.
  • [28] R. P. Gupta, “Electronic-Structure Of Crystalline And Amorphous-Silicon Dioxide,” Physical Review B, vol. 32, no.12, pp. 8278-8292, 1985.
  • [29] W. Vervisch, C. Mottet and J. Goniakowski, “Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface,” Physical Review B, vol. 65, no. 24, pp. 245411(1-12), 2002.
  • [30] F. Cyrot-Lackmann and F. Ducastelle, “Binding energies of transition-metal atoms adsorbed on a transition metal,” Physical Review B, vol. 4, pp. 6265, 1971.
  • [31] V. Rosato, M. Guillope, B. Legrand, “Thermodynamic and structural properties of f.c.c. transition metals using a simple tight-binding model,” Philosophical Magazine A, vol. 59, no. 2, pp. 321-336, 1989.
  • [32] D. Bochiccio, R. Ferrando, E. Panizon and G. Rossi, “Structures and segragation patterns of Ag-Cu and Ag-Ni nanoalloys adsorbed on MgO(001),” Journal of Physics: Condensed Matter, vol. 28, pp. 064005-1 - 064005-13, 2016.
  • [33] F. R. Negreiros, G. Barcaro, Z. Kuntova, G. Rossi, R. Ferrando, A. Fortunelli, “Structures of AgPd nanoclusters adsorbed on MgO(100): A computational study,” Surface Science, vol. 605, pp. 483-488, 2011.
  • [34] H. Arslan, A. K. Garip and R. L. Johnston, “Theoretical study of the structures and chemical ordering of cobalt-palladium nanoclusters,” Physical Chemistry Chemical Physics, vol.17, pp. 28311-28321, 2015.
  • [35] C. Goyhenex, H. Bulou, J.P. Deville, G. Treglia, “Pt/Co (0001) superstructures in the submonolayer range: A tight-binding quenched-molecular-dynamics study,” Physical Review B, vol. 60, pp. 2781-2788, 1999.
  • [36] S. Rives, A. Catherinot, F. Dumas-Bouchiat, C. Champeaux, A. Videcoq and R. Ferrando, “Growth of Co isolated clusters in the gas phase: Experiment and molecular Dynamics simulations,” Physical Review B, vol. 77, pp. 85407, 2008.
  • [37] H. G. Kim, S. K. Choi and H. M. Lee, “New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters,” The Journal of Chemical Physics, vol.128, no. 14, pp. 144702(1-4), 2008.
  • [38] S. Taran, “Metal nanoalaşımların MgO(001) yüzeyi üzerinde yapısal ve dinamik özelliklerinin simülasyon yöntemiyle incelenmesi,” Doktora tezi, Fizik Bölümü, Bülent Ecevit Üniversitesi, Zonguldak, Türkiye, 2017.
  • [39] T. Bingöl, “Lennard-Jones İkili Atom Yığınlarının Yapısal ve Termodinamik Özelliklerinin Monte Carlo Metoduyla İncelenmesi,” Yüksek Lisans Tezi, Fizik Bölümü, Zonguldak Karaelmas Üniversitesi, Zonguldak, Türkiye, 2008.
  • [40] A. Stukowski, “Structure identification methods for atomistic simulations of crystalline materials,” Modelling and Simulation in Material Science and Engineering, vol. 20, pp. 045021, 2012.
  • [41] S. Taran ve H. Arslan, “MgO(001) Yüzeyi Üzerinde Desteklenen AuN, PdN ve 1:1 Oranına Sahip (AuPd)N (N=50, 100, 150, 200) Nano Atom Yığınlarının Yapısal Özellikleri,” Karaelmas Fen ve Mühendislik Dergisi, c.7, s. 2, ss. 476-484, 2017.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Songül Taran

Haydar Arslan

Yayımlanma Tarihi 1 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 4

Kaynak Göster

APA Taran, S., & Arslan, H. (2018). ConPdm ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 6(4), 791-807. https://doi.org/10.29130/dubited.396582
AMA Taran S, Arslan H. ConPdm ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi. DÜBİTED. Ağustos 2018;6(4):791-807. doi:10.29130/dubited.396582
Chicago Taran, Songül, ve Haydar Arslan. “ConPdm Ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 6, sy. 4 (Ağustos 2018): 791-807. https://doi.org/10.29130/dubited.396582.
EndNote Taran S, Arslan H (01 Ağustos 2018) ConPdm ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 4 791–807.
IEEE S. Taran ve H. Arslan, “ConPdm ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi”, DÜBİTED, c. 6, sy. 4, ss. 791–807, 2018, doi: 10.29130/dubited.396582.
ISNAD Taran, Songül - Arslan, Haydar. “ConPdm Ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6/4 (Ağustos 2018), 791-807. https://doi.org/10.29130/dubited.396582.
JAMA Taran S, Arslan H. ConPdm ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi. DÜBİTED. 2018;6:791–807.
MLA Taran, Songül ve Haydar Arslan. “ConPdm Ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 6, sy. 4, 2018, ss. 791-07, doi:10.29130/dubited.396582.
Vancouver Taran S, Arslan H. ConPdm ve ConAum (n+m=100) Nanoalaşımlarının MgO(001) Yüzeyi Üzerindeki Yapısal Özelliklerinin İncelenmesi. DÜBİTED. 2018;6(4):791-807.