Araştırma Makalesi
BibTex RIS Kaynak Göster

Electrochemical Characterization of Pyrene Substituted Conducting Polymer via Nanostructured Carbon Material

Yıl 2019, Cilt: 7 Sayı: 1, 922 - 934, 31.01.2019
https://doi.org/10.29130/dubited.420330

Öz

Polymeric composite materials have gained importance for their superior electrical properties together with the
developing technology. Nowadays, the production of novel composites are preferred for their superior electrical
and mechanical properties since they enable the electron transfer which has great charge density, derivable
functional groups and low cost carbon nano materials are combined with polymeric materials. Thus, in this work,
the electrochemical properties of the composite material obtained by (E) -4- (2,5-di (thiophen-2-yl) -1H-pyrrole1 -yl) -N- (pyran-1-ylmethylene) aniline (PMA) coating on the indium tin oxide (ITO) coated electrode modified
with reduced graphene oxide (rGO) have been studied. The monomer PMA has been successfully synthesized
via condensation reaction of pyrene-4-carbaldehyde and 4- (2,5-di (thiophen-2-yl) -1H-pyrrol-1-yl) aniline and
characterization of PMA has been achieved by 1H-NMR. By using electrochemical techniques, the stability, and
charge density of the obtained rGO / pPMA composite material and by using spectroelectrochemical techniques,
the optical properties of it have been analyzed. As the obtained results have been evaluated, it is observed that
the composite material supported by the produced nanocarbon material (NCM) has %99 a complete
electrochemical determination and has on average %42, a high optical permittivity to be used in smart materials.
The observed complete stability and high optical permittivity are promising for the use of the produced
composite material in technological practices.

Kaynakça

  • [1] T. Soganci, S. Soyleyici, H. C. Soyleyici, and M. Ak, "High Contrast Electrochromic Polymer and Copolymer Materials Based on Amide-Substituted Poly(Dithienyl Pyrrole)," Journal of the Electrochemical Society, vol. 164, no. 2, pp. H11–H20, 2017.
  • [2] T. Soganci, O. Gumusay, H.C. Soyleyici, and M. Ak, "Synthesis of highly branched conducting polymer architecture for electrochromic applications," Polymer, vol. 134, pp. 187-195, 2018.
  • [3] R. Olgac, T. Soganci, Y. Baygu, Y. Gök, and M. Ak, "Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: Synthesis, electropolymerization and its electro-optic and biosensor applications," Biosensors and Bioelectronics, vol. 98, pp. 202–209, 2017.
  • [4] T. Soganci, H.C. Soyleyici, D.O. Demirkol, M. Ak, and S. Timur, "Use of Super-Structural Conducting Polymer as Functional Immobilization Matrix in Biosensor Design," Journal of The Electrochemical Society, vol. 165, pp. B22–B26, 2018.
  • [5] R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, "Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems," ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, 2017.
  • [6] T. Soganci, S. Soyleyici, H.C. Soyleyici, and M. Ak, "Optoelectrochromic characterization and smart windows application of bi-functional amid substituted thienyl pyrrole derivative," Polymer, vol. 118, pp. 40–48, 2017.
  • [7] T. Soganci, H. C. Soyleyici, and M. Ak, "A soluble and fluorescent new type thienylpyrrole based conjugated polymer: Optical, electrical and electrochemical properties," Physical Chemistry Chemical Physics, vol. 18, pp. 14401-14407, 2016.
  • [8] T. Soganci, H. C. Soyleyici, M. Ak, and H. Cetisli, "An Amide Substituted Dithienylpyrrole Based Copolymer: Its Electrochromic Properties," Journal of The Electrochemical Society, vol. 163, no. 2, pp. H59–H66, 2016.
  • [9] S. Liu, Q. Wen, L. Tang, and J. Jiang, "Phospholipid-Graphene Nanoassembly as A Novel Fluorescence Biosensor for Sensitive Detection of Phospholipase D Activity," Analytical Chemistry, vol. 84, pp. 5944−5950, 2012.
  • [10] F. Memioǧlu, A. Bayrakçeken, T. Öznülüer, and M. Ak, "Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications," International Journal of Hydrogen Energy, vol. 37, pp. 16673–16679, 2012.
  • [11] D. Ye, L. Luo, Y. Ding, Q. Chen, and X. Liu, "A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode," Analyst, vol. 136, no. 21, pp. 4563-4569, 2011.
  • [12] M. Deng, X. Yang, M. Silke, W. Qiu, M. Xu, and G. Borghs, "Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes," Sensors Actuators B: Chemical, vol. 158, no. 1, pp. 176–184, 2011.
  • [13] S. Bhandari, M. Deepa, A. K. Srivastava, A. G. Joshi, and R. Kant, "Poly(3,4- ethylenedioxythiophene)-multiwalled carbon nanotube composite films: Structure-directed amplified electrochromic response and improved redox activity," The Journal of the Physical Chemistry B, vol. 113, no. 28, pp. 9416–9428, 2009.
  • [14] A. P. Saxena, M. Deepa, A.G. Joshi, S. Bhandari, and A. K. Srivastava, "Poly(3,4- ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: Improved conduction and electrochromism," ACS Applied Material and Interfaces, vol. 3, no. 4 , pp. 1115–1126, 2011.
  • [15] K. J. Cash, and H. A. Clark, "Nanosensors and nanomaterials for monitoring glucose in diabetes," Trends in Molecular Medicine, vol. 16, no. 12, pp. 584–593, 2010.
  • [16] J. Wang, "Nanomaterial-based electrochemical biosensors," Analyst, vol. 130, no. 4 , pp. 421- 426, 2005.
  • [17] K. K. Reza, M. A. Ali, S. Srivastava, V. V. Agrawal, and A. M. Biradar, "Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor," Biosensors and Bioelectronics, vol. 74, pp. 644–651, 2015.
  • [18] M. Ak, H.B. Yildiz, and L. Toppare, "Enzyme immobilization in a photosensitive conducting polymer bearing azobenzene in the main chain," Polymer Bulletin, vol. 71, no.7, pp. 1827–1841, 2014.
  • [19] T. Soganci, D. O. Demirkol, M. Ak, and S. Timur, "A novel organic–inorganic hybrid conducting copolymer for mediated biosensor applications," RSC Advances, vol. 4, no. 86, pp. 46357– 46362, 2014.
  • [20] Rui Xiao, "Controlled electrochemical synthesis of conductive polymer nanostructures and electrochromism property study," PhD. dissertation, Department of Chemistry and Biochemistry, University of Maryland, College Park, 2007.
  • [21] A. Colina, V. Ruiz, and A. Heras, "Spectroelectrochemical study of the electrosynthesis of Pt nanoparticles / poly ( 3 , 4- (ethylenedioxythiophene ) composite," Electrochimica Acta, vol. 145, pp. 139–147, 2014.
  • [22] F. Kuralay, S. Demirci, M. Kiristi, L. Oksuz, and A.U. Oksuz, "Poly(3,4- ethylenedioxythiophene) coated chitosan modified disposable electrodes for DNA and DNA–drug interaction sensing," Colloids Surfaces B: Biointerfaces, vol. 123, pp. 825–830, 2014.
  • [23] S. Yalçınkaya, "Electrochemical synthesis of poly(o-anisidine)/chitosan composite on platinum and mild steel electrodes," Progress in Organic Coatings, vol. 76, no. 1, pp. 181–187, 2012.
  • [24] F. Garnier, G. Tourillon, M. Gazard, and J. C. Dubois, "Organic conducting polymers derived from substituted tiophenes as electrochromic material," Journal of Electroanalytical Chemistry, vol. 148, pp. 299–303, 1983.
  • [25] J. D. Newman, A. P. F. Turner, and G. Marrazza, "Ink-jet printing for the fabrication of amperometric glucose biosensors," Analytica Chimica Acta, vol. 262, no. 1, pp. 13–17, 1992.
  • [26] R. Gangopadhyay, and A. De, "Conducting polymer nanocomposites: A brief overview," Chemistry of Materials, vol. 12, no. 3, pp. 608–622, 2000.
  • [27] M. Gerard, A. Chaubey, B. D. Malhotra, "Application of conducting polymers to biosensors," Biosensors and Bioelectronics, vol. 17, pp. 345–359, 2002.
  • [28] B. Krajewska, "Application of chitin- and chitosan-based materials for enzyme immobilizations: a review," Enzyme and Microbial Technology, vol. 35, no. 2-3, pp. 126–139, 2003.
  • [29] R. Ayranci, T. Soganci, M. Guzel, and O. Demirkol, "Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives," RSC Advances, vol. 5, pp. 52543–52549, 2015.
  • [30] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, et al., "Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation," Nano-Structures & Nano-Objects, vol. 11, pp. 13–19, 2017.
  • [31] R. Ayranci, and M. Ak, "Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate," New Journal of Chemistry, vol. 40, no. 9, pp. 8053–8059, 2016.
  • [32] S. Göker, G. Hizalan, M. Ileri, S. O. Hacioglu, and L. Toppare, "The effect of the different donor units on fluorescent conjugated polymers containing 2,1,3-benzooxadiazole as the acceptor unit," Journal of Electroanalytical Chemistry, vol. 751, pp. 80–89, 2015.
  • [33] Y.A. Udum, C.G. Hizliates, Y. Ergün, and L. Toppare, "Electrosynthesis and characterization of an electrochromic material containing biscarbazole-oxadiazole units and its application in an electrochromic device," Thin Solid Films, vol. 595, pp. 61–67, 2015.
  • [34] Y. Olivier, D. Niedzialek, V. Lemaur, W. Pisula, K. Müllen, U. Koldemir, et al., "25th anniversary article: High-mobility hole and electron transport conjugated polymers: How structure defines function," Advanced Materials, vol. 26, pp. 2119–2136, 2014.

Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu

Yıl 2019, Cilt: 7 Sayı: 1, 922 - 934, 31.01.2019
https://doi.org/10.29130/dubited.420330

Öz

Gelişen teknolojiyle birlikte polimerik kompozit malzemeler üstün elektriksel özellikleri sebebiyle dikkat
çekmektedir. Günümüzde yüksek yük yoğunluğuna, türevlendirilebilir fonksiyonel gruplara sahip ve elektron
transferine olanak sağlayan, düşük maliyetli karbon nanomateryallerin polimerik malzemeler ile birleştirilerek,
yeni kompozit malzemelerin üretimi, bu malzemelerin üstün elektriksel ve mekanik özelliklerinden dolayı tercih
edilmektedir. Bu sebeple, bu çalışmada, indirgenmiş grafen oksit (rGO) ile modifiye edilmiş indiyum kalay oksit
(ITO) kaplı çalışma elektrodu üzerine (E)-4-(2,5-di(tiyofen-2-yl)-1H-pirol-1-yl)-N-(piren-1-ylmetilen) anilinin
(PMA) elektrokimyasal yöntemle kaplanmasıyla elde edilen kompozit malzemenin elektrokimyasal özellikleri
incelenmiştir. PMA, piren-4-karbaldehit ve 4-(2,5-di(tiyofen-2-yl)-1H-pirol-1-yl)anilinin, kondenzasyon
reaksiyonu sonucu başarılı bir şekilde sentezlenmiş ve karakterizasyonu 1H-NMR ile gerçekleştirilmiştir. Elde
edilen rGO/pPMA kompozitinin, elektrokimyasal teknikler kullanılarak stabilitesi, yük yoğunluğu,
spektroelektrokimyasal teknikler kullanılarak ise optik özellikleri analiz edilmiştir. Elde edilen sonuçlar
değerlendirildiğinde, üretilen nanokarbon (NCM) ile desteklenmiş kompozit malzemenin %99’luk mükemmel
bir elektrokimyasal kararlılığa ve % 42 gibi akıllı malzemelerde kullanılabilecek yüksek bir optik geçirgenliğe
sahip olduğu gözlenmiştir. Gözlenen mükemmel stabilite ve yüksek optik geçirgenlik, üretilen kompozit
malzemenin teknolojik uygulamalarda kullanımı için ümit vaat etmektedir.

Kaynakça

  • [1] T. Soganci, S. Soyleyici, H. C. Soyleyici, and M. Ak, "High Contrast Electrochromic Polymer and Copolymer Materials Based on Amide-Substituted Poly(Dithienyl Pyrrole)," Journal of the Electrochemical Society, vol. 164, no. 2, pp. H11–H20, 2017.
  • [2] T. Soganci, O. Gumusay, H.C. Soyleyici, and M. Ak, "Synthesis of highly branched conducting polymer architecture for electrochromic applications," Polymer, vol. 134, pp. 187-195, 2018.
  • [3] R. Olgac, T. Soganci, Y. Baygu, Y. Gök, and M. Ak, "Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: Synthesis, electropolymerization and its electro-optic and biosensor applications," Biosensors and Bioelectronics, vol. 98, pp. 202–209, 2017.
  • [4] T. Soganci, H.C. Soyleyici, D.O. Demirkol, M. Ak, and S. Timur, "Use of Super-Structural Conducting Polymer as Functional Immobilization Matrix in Biosensor Design," Journal of The Electrochemical Society, vol. 165, pp. B22–B26, 2018.
  • [5] R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, "Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems," ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, 2017.
  • [6] T. Soganci, S. Soyleyici, H.C. Soyleyici, and M. Ak, "Optoelectrochromic characterization and smart windows application of bi-functional amid substituted thienyl pyrrole derivative," Polymer, vol. 118, pp. 40–48, 2017.
  • [7] T. Soganci, H. C. Soyleyici, and M. Ak, "A soluble and fluorescent new type thienylpyrrole based conjugated polymer: Optical, electrical and electrochemical properties," Physical Chemistry Chemical Physics, vol. 18, pp. 14401-14407, 2016.
  • [8] T. Soganci, H. C. Soyleyici, M. Ak, and H. Cetisli, "An Amide Substituted Dithienylpyrrole Based Copolymer: Its Electrochromic Properties," Journal of The Electrochemical Society, vol. 163, no. 2, pp. H59–H66, 2016.
  • [9] S. Liu, Q. Wen, L. Tang, and J. Jiang, "Phospholipid-Graphene Nanoassembly as A Novel Fluorescence Biosensor for Sensitive Detection of Phospholipase D Activity," Analytical Chemistry, vol. 84, pp. 5944−5950, 2012.
  • [10] F. Memioǧlu, A. Bayrakçeken, T. Öznülüer, and M. Ak, "Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications," International Journal of Hydrogen Energy, vol. 37, pp. 16673–16679, 2012.
  • [11] D. Ye, L. Luo, Y. Ding, Q. Chen, and X. Liu, "A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode," Analyst, vol. 136, no. 21, pp. 4563-4569, 2011.
  • [12] M. Deng, X. Yang, M. Silke, W. Qiu, M. Xu, and G. Borghs, "Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes," Sensors Actuators B: Chemical, vol. 158, no. 1, pp. 176–184, 2011.
  • [13] S. Bhandari, M. Deepa, A. K. Srivastava, A. G. Joshi, and R. Kant, "Poly(3,4- ethylenedioxythiophene)-multiwalled carbon nanotube composite films: Structure-directed amplified electrochromic response and improved redox activity," The Journal of the Physical Chemistry B, vol. 113, no. 28, pp. 9416–9428, 2009.
  • [14] A. P. Saxena, M. Deepa, A.G. Joshi, S. Bhandari, and A. K. Srivastava, "Poly(3,4- ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: Improved conduction and electrochromism," ACS Applied Material and Interfaces, vol. 3, no. 4 , pp. 1115–1126, 2011.
  • [15] K. J. Cash, and H. A. Clark, "Nanosensors and nanomaterials for monitoring glucose in diabetes," Trends in Molecular Medicine, vol. 16, no. 12, pp. 584–593, 2010.
  • [16] J. Wang, "Nanomaterial-based electrochemical biosensors," Analyst, vol. 130, no. 4 , pp. 421- 426, 2005.
  • [17] K. K. Reza, M. A. Ali, S. Srivastava, V. V. Agrawal, and A. M. Biradar, "Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor," Biosensors and Bioelectronics, vol. 74, pp. 644–651, 2015.
  • [18] M. Ak, H.B. Yildiz, and L. Toppare, "Enzyme immobilization in a photosensitive conducting polymer bearing azobenzene in the main chain," Polymer Bulletin, vol. 71, no.7, pp. 1827–1841, 2014.
  • [19] T. Soganci, D. O. Demirkol, M. Ak, and S. Timur, "A novel organic–inorganic hybrid conducting copolymer for mediated biosensor applications," RSC Advances, vol. 4, no. 86, pp. 46357– 46362, 2014.
  • [20] Rui Xiao, "Controlled electrochemical synthesis of conductive polymer nanostructures and electrochromism property study," PhD. dissertation, Department of Chemistry and Biochemistry, University of Maryland, College Park, 2007.
  • [21] A. Colina, V. Ruiz, and A. Heras, "Spectroelectrochemical study of the electrosynthesis of Pt nanoparticles / poly ( 3 , 4- (ethylenedioxythiophene ) composite," Electrochimica Acta, vol. 145, pp. 139–147, 2014.
  • [22] F. Kuralay, S. Demirci, M. Kiristi, L. Oksuz, and A.U. Oksuz, "Poly(3,4- ethylenedioxythiophene) coated chitosan modified disposable electrodes for DNA and DNA–drug interaction sensing," Colloids Surfaces B: Biointerfaces, vol. 123, pp. 825–830, 2014.
  • [23] S. Yalçınkaya, "Electrochemical synthesis of poly(o-anisidine)/chitosan composite on platinum and mild steel electrodes," Progress in Organic Coatings, vol. 76, no. 1, pp. 181–187, 2012.
  • [24] F. Garnier, G. Tourillon, M. Gazard, and J. C. Dubois, "Organic conducting polymers derived from substituted tiophenes as electrochromic material," Journal of Electroanalytical Chemistry, vol. 148, pp. 299–303, 1983.
  • [25] J. D. Newman, A. P. F. Turner, and G. Marrazza, "Ink-jet printing for the fabrication of amperometric glucose biosensors," Analytica Chimica Acta, vol. 262, no. 1, pp. 13–17, 1992.
  • [26] R. Gangopadhyay, and A. De, "Conducting polymer nanocomposites: A brief overview," Chemistry of Materials, vol. 12, no. 3, pp. 608–622, 2000.
  • [27] M. Gerard, A. Chaubey, B. D. Malhotra, "Application of conducting polymers to biosensors," Biosensors and Bioelectronics, vol. 17, pp. 345–359, 2002.
  • [28] B. Krajewska, "Application of chitin- and chitosan-based materials for enzyme immobilizations: a review," Enzyme and Microbial Technology, vol. 35, no. 2-3, pp. 126–139, 2003.
  • [29] R. Ayranci, T. Soganci, M. Guzel, and O. Demirkol, "Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives," RSC Advances, vol. 5, pp. 52543–52549, 2015.
  • [30] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, et al., "Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation," Nano-Structures & Nano-Objects, vol. 11, pp. 13–19, 2017.
  • [31] R. Ayranci, and M. Ak, "Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate," New Journal of Chemistry, vol. 40, no. 9, pp. 8053–8059, 2016.
  • [32] S. Göker, G. Hizalan, M. Ileri, S. O. Hacioglu, and L. Toppare, "The effect of the different donor units on fluorescent conjugated polymers containing 2,1,3-benzooxadiazole as the acceptor unit," Journal of Electroanalytical Chemistry, vol. 751, pp. 80–89, 2015.
  • [33] Y.A. Udum, C.G. Hizliates, Y. Ergün, and L. Toppare, "Electrosynthesis and characterization of an electrochromic material containing biscarbazole-oxadiazole units and its application in an electrochromic device," Thin Solid Films, vol. 595, pp. 61–67, 2015.
  • [34] Y. Olivier, D. Niedzialek, V. Lemaur, W. Pisula, K. Müllen, U. Koldemir, et al., "25th anniversary article: High-mobility hole and electron transport conjugated polymers: How structure defines function," Advanced Materials, vol. 26, pp. 2119–2136, 2014.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuğba Soğancı 0000-0003-1906-9115

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Soğancı, T. (2019). Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(1), 922-934. https://doi.org/10.29130/dubited.420330
AMA Soğancı T. Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu. DÜBİTED. Ocak 2019;7(1):922-934. doi:10.29130/dubited.420330
Chicago Soğancı, Tuğba. “Nanokarbon Ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, sy. 1 (Ocak 2019): 922-34. https://doi.org/10.29130/dubited.420330.
EndNote Soğancı T (01 Ocak 2019) Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 1 922–934.
IEEE T. Soğancı, “Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu”, DÜBİTED, c. 7, sy. 1, ss. 922–934, 2019, doi: 10.29130/dubited.420330.
ISNAD Soğancı, Tuğba. “Nanokarbon Ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/1 (Ocak 2019), 922-934. https://doi.org/10.29130/dubited.420330.
JAMA Soğancı T. Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu. DÜBİTED. 2019;7:922–934.
MLA Soğancı, Tuğba. “Nanokarbon Ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 7, sy. 1, 2019, ss. 922-34, doi:10.29130/dubited.420330.
Vancouver Soğancı T. Nanokarbon ile Desteklenmiş Piren Sübstitüye İletken Polimerin Elektrokimyasal Karakterizasyonu. DÜBİTED. 2019;7(1):922-34.