Araştırma Makalesi
BibTex RIS Kaynak Göster

The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process

Yıl 2019, Cilt: 7 Sayı: 1, 837 - 848, 31.01.2019
https://doi.org/10.29130/dubited.499773

Öz

In this paper, one and two-dimensional Cauchy problems based on an advection-diffusion equation with
Conformable derivative are analysed. This constitutive equation is a natural result of the description of the
diffusion coefficient and velocity field with temporally dependent power functions. The main aim of the
present study is to find the analytical solutions of the revealed one and two-dimensional Cauchy problems.
For this purpose, the fractional Laplace and the exponential Fourier integral transformations have been
applied to obtain the analytical solutions. Correspondingly, the diffusive stresses have been computed by
using some basic principles of classical elasticity theory. Some comparative interpretations have been made
with the Caputo fractional advection-diffusion model to demonstrate the effect of the conformable derivative
on the diffusion. 

Kaynakça

  • [1] L.W. Gelhar and M.A. Collins, “General Analysis of Longitudinal Dispersion in NonUniform Flow”, Water Resour. Res., vol. 7, pp. 1511–1521, 1971.
  • [2] G. Nützmann, S. Maciejewski, and K. Joswig, “Estimation of Water Saturation Dependence of Dispersion in Unsaturated Porous Media: Experiments and Modeling Analysis”, Adv. Water Res., vol. 25, pp. 565–576, 2002.
  • [3] N. Toride, M. Inoue, and F. J. Leij, “Hydrodynamic Dispersion in an Unsaturated Dune Sand”, Soil Sci. Soc. Am. J., vol. 67, pp. 703–712, 2003.
  • [4] D. K Jaiswal, A. Kumar, N. Kumar and R. R. Yadav, “Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one dimensional semiinfinite media”, J. Hydro-environ. Res., vol. 2, pp. 254–263, 2009.
  • [5] A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain”, J. Earth Syst. Sci. vol. 118, no. 5, pp. 539–549, 2009.
  • [6] A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media”, J. Hydrology, vol. 380, pp. 330-337, 2010.
  • [7] A. Sanskrityayn and N. Kumar, “Analytical solution of advection-diffusion equation in heterogeneous infinite medium using Green’s function method”, J. Earth Syst. Sci., vol.125, no. 8, pp. 1713-1723, 2016.
  • [8] R. R. Yadav, D. K. Jaiswal, H. K. Yadav & Gulrana, Temporally dependent dispersion through semi-infinite homogeneous porous media: An analytical solution. IJRRAS, vol. 6, no. 2, 2011.
  • [9] D. S. Banks and C. Fradin, “Anomalous diffusion of proteins due to molecular crowding”, Biophysical Journal, vol. 89, no. 5, pp. 2960-2971, 2005.
  • [10] J. Wu, K. M. Berland, “Propagators and Time-Dependent Diffusion Coefficients for Anomalous Diffusion”, Biophysical Journal, vol. 95, no. 4, pp. 2049-2052, 2008.
  • [11] Y. Povstenko and J. Klekot, “Fundamental solution to the Cauchy problem for the timefractional advection-diffusion equation”, J. Appl. Math. Comput. Mech., vol. 13, no. 1, pp. 95-102,2014.
  • [12] Y. Povstenko, Fractional Thermoelasticity, Volume 219/Solid Mechanics and Its Applications. Springer, New York, USA, 2015.
  • [13] D. Baleanu, K. Diethelm and E. Scalas, Fractional Calculus: Models and Numerical Methods. Volume 3/ Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing, USA, 2012.
  • [14] H. M. Baskonus and H. Bulut, “On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method”, Open Math., vol. 13, pp. 547-556, 2015.
  • [15] H. M. Baskonus, F.B.M. Belgacem and H. Bulut, “Solutions of Nonlinear Fractional Differential Equations Systems through an Implementation of the Variational Iteration Method”,Fractional Dynamics, vol. 333, pp. 336-345, 2015.
  • [16] X. J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications. Academic Press, 2015.
  • [17] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math., vol. 264, pp. 65–70, 2014.
  • [18] T. Abdeljawad, “On Conformable Fractional Calculus”, J. Comput. Appl. Math., vol. 279, pp. 57–66, 2015.
  • [19] A. Atangana, D. Baleanu and A. Alsaedi, “New properties of conformable derivative”, Open Math., vol. 13, pp. 889-898, 2015.
  • [20] W. Nowacki, Thermoelasticity, 2nd Edition, Pergamon, December 2013.
  • [21] D. Avcı, Beyza B. İskender Eroğlu, N. Özdemir, “The Dirichlet Problem of A Conformable Advection-Diffusion Equation”, Thermal Science, vol. 21, no. 1, pp. 9-18, 2017.

Lokal Olarak Genelleştirilmiş Adveksiyon-Difüzyon Sürecinden Kaynaklanan Difüzif Gerilmeler

Yıl 2019, Cilt: 7 Sayı: 1, 837 - 848, 31.01.2019
https://doi.org/10.29130/dubited.499773

Öz

Bu çalışmada, uyumlu türevli bir adveksiyon-difüzyon denklemine dayanan bir ve iki-boyutlu Cauchy
problemleri analiz edilmiştir. Bu kurucu denklem, zamana bağlı kuvvet fonksiyonlarıyla ifade edilen difüzyon
katsayısı ve hız alanı tanımlamalarının doğal bir sonucudur. Bu çalışmanın temel amacı, ortaya konan bir ve iki
boyutlu Cauchy problemlerinin analitik çözümlerini bulmaktır. Bu amaçla analitik çözümleri elde etmek için
kesirli Laplace ve üstel Fourier integral dönüşümleri uygulanmıştır. Buna bağlı olarak yayılma gerilmeleri klasik
elastisite teorisinin bazı temel prensipleri kullanılarak hesaplanmıştır. Uyumlu türev operatörünün difüzyon
üzerindeki etkisini göstermek için Caputo türevli kesirli adveksiyon-difüzyon modeli göz önüne alınarak bazı
karşılaştırmalı yorumlar yapılmıştır.

Kaynakça

  • [1] L.W. Gelhar and M.A. Collins, “General Analysis of Longitudinal Dispersion in NonUniform Flow”, Water Resour. Res., vol. 7, pp. 1511–1521, 1971.
  • [2] G. Nützmann, S. Maciejewski, and K. Joswig, “Estimation of Water Saturation Dependence of Dispersion in Unsaturated Porous Media: Experiments and Modeling Analysis”, Adv. Water Res., vol. 25, pp. 565–576, 2002.
  • [3] N. Toride, M. Inoue, and F. J. Leij, “Hydrodynamic Dispersion in an Unsaturated Dune Sand”, Soil Sci. Soc. Am. J., vol. 67, pp. 703–712, 2003.
  • [4] D. K Jaiswal, A. Kumar, N. Kumar and R. R. Yadav, “Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one dimensional semiinfinite media”, J. Hydro-environ. Res., vol. 2, pp. 254–263, 2009.
  • [5] A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain”, J. Earth Syst. Sci. vol. 118, no. 5, pp. 539–549, 2009.
  • [6] A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media”, J. Hydrology, vol. 380, pp. 330-337, 2010.
  • [7] A. Sanskrityayn and N. Kumar, “Analytical solution of advection-diffusion equation in heterogeneous infinite medium using Green’s function method”, J. Earth Syst. Sci., vol.125, no. 8, pp. 1713-1723, 2016.
  • [8] R. R. Yadav, D. K. Jaiswal, H. K. Yadav & Gulrana, Temporally dependent dispersion through semi-infinite homogeneous porous media: An analytical solution. IJRRAS, vol. 6, no. 2, 2011.
  • [9] D. S. Banks and C. Fradin, “Anomalous diffusion of proteins due to molecular crowding”, Biophysical Journal, vol. 89, no. 5, pp. 2960-2971, 2005.
  • [10] J. Wu, K. M. Berland, “Propagators and Time-Dependent Diffusion Coefficients for Anomalous Diffusion”, Biophysical Journal, vol. 95, no. 4, pp. 2049-2052, 2008.
  • [11] Y. Povstenko and J. Klekot, “Fundamental solution to the Cauchy problem for the timefractional advection-diffusion equation”, J. Appl. Math. Comput. Mech., vol. 13, no. 1, pp. 95-102,2014.
  • [12] Y. Povstenko, Fractional Thermoelasticity, Volume 219/Solid Mechanics and Its Applications. Springer, New York, USA, 2015.
  • [13] D. Baleanu, K. Diethelm and E. Scalas, Fractional Calculus: Models and Numerical Methods. Volume 3/ Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing, USA, 2012.
  • [14] H. M. Baskonus and H. Bulut, “On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method”, Open Math., vol. 13, pp. 547-556, 2015.
  • [15] H. M. Baskonus, F.B.M. Belgacem and H. Bulut, “Solutions of Nonlinear Fractional Differential Equations Systems through an Implementation of the Variational Iteration Method”,Fractional Dynamics, vol. 333, pp. 336-345, 2015.
  • [16] X. J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications. Academic Press, 2015.
  • [17] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math., vol. 264, pp. 65–70, 2014.
  • [18] T. Abdeljawad, “On Conformable Fractional Calculus”, J. Comput. Appl. Math., vol. 279, pp. 57–66, 2015.
  • [19] A. Atangana, D. Baleanu and A. Alsaedi, “New properties of conformable derivative”, Open Math., vol. 13, pp. 889-898, 2015.
  • [20] W. Nowacki, Thermoelasticity, 2nd Edition, Pergamon, December 2013.
  • [21] D. Avcı, Beyza B. İskender Eroğlu, N. Özdemir, “The Dirichlet Problem of A Conformable Advection-Diffusion Equation”, Thermal Science, vol. 21, no. 1, pp. 9-18, 2017.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Derya Avcı 0000-0003-3662-0474

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Avcı, D. (2019). The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process. Duzce University Journal of Science and Technology, 7(1), 837-848. https://doi.org/10.29130/dubited.499773
AMA Avcı D. The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process. DÜBİTED. Ocak 2019;7(1):837-848. doi:10.29130/dubited.499773
Chicago Avcı, Derya. “The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process”. Duzce University Journal of Science and Technology 7, sy. 1 (Ocak 2019): 837-48. https://doi.org/10.29130/dubited.499773.
EndNote Avcı D (01 Ocak 2019) The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process. Duzce University Journal of Science and Technology 7 1 837–848.
IEEE D. Avcı, “The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process”, DÜBİTED, c. 7, sy. 1, ss. 837–848, 2019, doi: 10.29130/dubited.499773.
ISNAD Avcı, Derya. “The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process”. Duzce University Journal of Science and Technology 7/1 (Ocak 2019), 837-848. https://doi.org/10.29130/dubited.499773.
JAMA Avcı D. The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process. DÜBİTED. 2019;7:837–848.
MLA Avcı, Derya. “The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process”. Duzce University Journal of Science and Technology, c. 7, sy. 1, 2019, ss. 837-48, doi:10.29130/dubited.499773.
Vancouver Avcı D. The Diffusive Stresses Arising from A Locally Generalized Advection-Diffusion Process. DÜBİTED. 2019;7(1):837-48.