Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products

Yıl 2019, Cilt:7 Sayı:2 (2019) (Özel Sayı), 147 - 157, 30.03.2019
https://doi.org/10.29130/dubited.441221

Öz

Yaygın olarak üç boyutlu (3D) baskı olarak bilinen Eklemeli Üretim (Additive Manufacturing - AM), bir ürünün Kartezyen koordinat sisteminde katmanla üretildiği süreçtir. Erişim Birikim Modelleme (Fused Deposition Modeling - FDM), fonksiyonel hızlı prototipleme ve ürün için en çok kullanılan AM sürecidir, üretimle ilgili zamanı ve malzemeyi azaltır. Bu çalışmanın amacı, 3D yazıcı sistem titreşimlerinin, imal edilen ürünlerin yüzey pürüzlülüğü üzerindeki etkilerini araştırmaktır. Üretim için malzeme olarak Polietileterftalat Glikol (PET-G) kullanılmıştır. Altı farklı dolgu şekli - Rectilinear, Grid, Triangular, Wiggle, Fast Honeycomb ve Full Honeycomb - kullanılmış ve her yapı için iki farklı üst katman - iki ve üç katman- uygulanarak toplam 12 test numunesi basılmıştır. Basılan ürünlerin yüzey pürüzlülüğü ölçümleri yapılarak elde edilen veriler üzerinden karşılaştırma yapılmış ve sonuçlar analiz edilmiştir. Sonuçlar, üç üst katmanlı ızgara (Grid) doldurma yapısının kullanılması, yüzey pürüzlülüğü için diğer doldurma yapılarına kıyasla daha uygun olduğunu göstermiştir. Dolgu şekli türüne ve üst katmanların sayısına bağlı olarak 3D yazıcı sisteminin titreşiminin ürünün yüzey kalitesi üzerinde önemli bir etkisi olduğu görülmüştür

Kaynakça

  • [1] L. N. Marcincinova, and J. Novak-Marcincin, “Experimental testing of materials used in fused deposition modeling rapid prototyping technology,” AMR, vol. 740, pp. 597-602, 2013.
  • [2] Z. Weng, J. Wang, T. Senthil, and L. Wu, “Mechanical and thermal properties of ABS / montmorillonite nanocomposites for fused deposition modeling 3D printing,” Materials and Design, vol. 102, pp. 276-283, 2016.
  • [3] S. H. Ahn, M. Montero, D. Odell, S. Roundy, and P. K. Wright, “Anisotropic material properties of fused deposition modeling ABS,” Rapid Prototyping Journal, vol. 8, no. 4, pp. 248-257, 2002.
  • [4] V. Nidagundi, R. Keshavamurthy, and C. Prakash, “Studies on parametric optimization for fuseddeposition modelling process,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1691-1699. 2015.
  • [5] A. Boschetto, and L. Bottini, “Design for manufacturing of surfaces to improve accuracy in fused deposition modeling,” Robotics And Computer- Integrated Manufacturing, vol. 37, pp. 103-114, 2016.
  • [6] K. V. Wong, A. Hernandez, “A review of additive manufacturing,” ISRN Mechanical Engineering, , vol. 2012, Article ID 208760, pp. 10, 2012
  • [7] C. K. Chua, and K. F. Leong, “3D printing and additive manufacturing: Principles and applications (with companion media pack) of rapid prototyping,” 4th ed. World Scientific Publishing Company, 2014.
  • [8] B. Mueller, “Additive manufacturing technologies - Rapid prototyping to direct digital manufacturing,” Assembly Automation, vol. 32, no. 2, 2012. 119
  • [9] J. P. Kruth, M. Leu, and T. Nakagawa, “Progress in additive manufacturing and rapid prototyping,” Cirp Annals.vol. 47, no. 2, pp. 525-540, 1998.
  • [10] T. Campbell, C. Williams, O. Ivanova, and B. Garrett, “Could 3D printing change the world. technologies, potential, and implications of additive manufacturing,” Atlantic Council, Washington, DC, 2011.
  • [11] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65-89, 2015.
  • [12] C. White, H. C. H. Li, B. Whittingham, I. Herzberg, and A. P. Mouritz, “Damage detection in repairs using frequency response techniques,” Composite Structure, vol. 87, no. 2, pp. 175–181, 2009.
  • [13] J. Martínez, J. L. Diéquez, E. Ares, A. Pereira, P. Hernández, and J. A. Pérez, “Comparative between FEM models and FDM parts and their approach to a real mechanical behavior,” Procedia Engineering, vol. 63 pp. 878-884, 2013.
  • [14] S. K. Chaitanya, K. M. Reddy, and S. N. S. H. Harsha, “Vibration properties of 3D printed/rapid prototype parts,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 4, no. 6, pp. 4602-4608, 2015.
  • [15] Z. Pilch, J. Domin, and A. Szłapa, “The impact of vibration of the 3d printer table on the quality of print,” In Selected Problems of Electrical Engineering and Electronics (WZEE), IEEE, pp. 1-6, 2015
  • [16] W. W. Focke, S. Joseph, and J. Grimbeek, “Mechanical properties of ternary blends of ABS+ HIPS+PETG,” Polymer-Plastics Technology and Engineering, vol. 48, no. 8, pp. 814-820, 2009.
  • [17] M. Kam, , A. İpekçi, and H.Saruhan, “Investigation of 3d printing filling structures effect on mechanical properties and surface roughness of PET-G material products,” Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 6(ISMSIT2017), pp. 114-121, 2017.
  • [18] M. Kam, H. Saruhan, and A. İpekçi, “Investigation the effects of 3D printer system vibrations on mechanical properties of the printed products”, Sigma J. Eng and Nat. Sci., vol. 36, no. 3, pp. 655-666, 2018.
  • [19] A. İpekçi, M. Kam, and H. Saruhan, “Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products”. Journal of New Results in Science, vol. 7, no. 2, pp. 1-8, 2018.

3b Yazıcı Sistemi Titreşimlerinin Ürünlerin Yüzey Pürüzlülüğüne Etkisinin İncelenmesi

Yıl 2019, Cilt:7 Sayı:2 (2019) (Özel Sayı), 147 - 157, 30.03.2019
https://doi.org/10.29130/dubited.441221

Öz

Additive Manufacturing (AM), widely known as three-dimensional (3D) printing, is the process that a product is fabricated layer by layer in Cartesian coordinate system. Fused Deposition Modelling (FDM) is the most used AM process for functional rapid prototyping and products reduces the time and material involved in manufacturing. The purpose of this study is to investigate the effects of 3D printer system vibrations on the surface roughness of fabricated products. Polyethyletherphthalate Glycol (PET-G) is used as material for fabrication. Six different filling structures - Rectilinear, Grid, Triangular, Wiggle, Fast Honeycomb, and Full Honeycomb - were used and for each structure two different top - two and three - layers implemented. A total of 12 samples specimens were fabricated. The results showed that using Full Honeycomb filling structure with three top layers is more suitable for surface roughness compare to the others filling structure used. It can be concluded that the vibration of 3D printer system considering type of filling structure and number of top layers have a significant effect on surface quality of product.

Kaynakça

  • [1] L. N. Marcincinova, and J. Novak-Marcincin, “Experimental testing of materials used in fused deposition modeling rapid prototyping technology,” AMR, vol. 740, pp. 597-602, 2013.
  • [2] Z. Weng, J. Wang, T. Senthil, and L. Wu, “Mechanical and thermal properties of ABS / montmorillonite nanocomposites for fused deposition modeling 3D printing,” Materials and Design, vol. 102, pp. 276-283, 2016.
  • [3] S. H. Ahn, M. Montero, D. Odell, S. Roundy, and P. K. Wright, “Anisotropic material properties of fused deposition modeling ABS,” Rapid Prototyping Journal, vol. 8, no. 4, pp. 248-257, 2002.
  • [4] V. Nidagundi, R. Keshavamurthy, and C. Prakash, “Studies on parametric optimization for fuseddeposition modelling process,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1691-1699. 2015.
  • [5] A. Boschetto, and L. Bottini, “Design for manufacturing of surfaces to improve accuracy in fused deposition modeling,” Robotics And Computer- Integrated Manufacturing, vol. 37, pp. 103-114, 2016.
  • [6] K. V. Wong, A. Hernandez, “A review of additive manufacturing,” ISRN Mechanical Engineering, , vol. 2012, Article ID 208760, pp. 10, 2012
  • [7] C. K. Chua, and K. F. Leong, “3D printing and additive manufacturing: Principles and applications (with companion media pack) of rapid prototyping,” 4th ed. World Scientific Publishing Company, 2014.
  • [8] B. Mueller, “Additive manufacturing technologies - Rapid prototyping to direct digital manufacturing,” Assembly Automation, vol. 32, no. 2, 2012. 119
  • [9] J. P. Kruth, M. Leu, and T. Nakagawa, “Progress in additive manufacturing and rapid prototyping,” Cirp Annals.vol. 47, no. 2, pp. 525-540, 1998.
  • [10] T. Campbell, C. Williams, O. Ivanova, and B. Garrett, “Could 3D printing change the world. technologies, potential, and implications of additive manufacturing,” Atlantic Council, Washington, DC, 2011.
  • [11] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65-89, 2015.
  • [12] C. White, H. C. H. Li, B. Whittingham, I. Herzberg, and A. P. Mouritz, “Damage detection in repairs using frequency response techniques,” Composite Structure, vol. 87, no. 2, pp. 175–181, 2009.
  • [13] J. Martínez, J. L. Diéquez, E. Ares, A. Pereira, P. Hernández, and J. A. Pérez, “Comparative between FEM models and FDM parts and their approach to a real mechanical behavior,” Procedia Engineering, vol. 63 pp. 878-884, 2013.
  • [14] S. K. Chaitanya, K. M. Reddy, and S. N. S. H. Harsha, “Vibration properties of 3D printed/rapid prototype parts,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 4, no. 6, pp. 4602-4608, 2015.
  • [15] Z. Pilch, J. Domin, and A. Szłapa, “The impact of vibration of the 3d printer table on the quality of print,” In Selected Problems of Electrical Engineering and Electronics (WZEE), IEEE, pp. 1-6, 2015
  • [16] W. W. Focke, S. Joseph, and J. Grimbeek, “Mechanical properties of ternary blends of ABS+ HIPS+PETG,” Polymer-Plastics Technology and Engineering, vol. 48, no. 8, pp. 814-820, 2009.
  • [17] M. Kam, , A. İpekçi, and H.Saruhan, “Investigation of 3d printing filling structures effect on mechanical properties and surface roughness of PET-G material products,” Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 6(ISMSIT2017), pp. 114-121, 2017.
  • [18] M. Kam, H. Saruhan, and A. İpekçi, “Investigation the effects of 3D printer system vibrations on mechanical properties of the printed products”, Sigma J. Eng and Nat. Sci., vol. 36, no. 3, pp. 655-666, 2018.
  • [19] A. İpekçi, M. Kam, and H. Saruhan, “Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products”. Journal of New Results in Science, vol. 7, no. 2, pp. 1-8, 2018.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Menderes Kam

Hamit Saruhan

Ahmet İpekçi

Yayımlanma Tarihi 30 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt:7 Sayı:2 (2019) (Özel Sayı)

Kaynak Göster

APA Kam, M., Saruhan, H., & İpekçi, A. (2019). Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products. Duzce University Journal of Science and Technology, 7(2), 147-157. https://doi.org/10.29130/dubited.441221
AMA Kam M, Saruhan H, İpekçi A. Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products. DÜBİTED. Mart 2019;7(2):147-157. doi:10.29130/dubited.441221
Chicago Kam, Menderes, Hamit Saruhan, ve Ahmet İpekçi. “Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products”. Duzce University Journal of Science and Technology 7, sy. 2 (Mart 2019): 147-57. https://doi.org/10.29130/dubited.441221.
EndNote Kam M, Saruhan H, İpekçi A (01 Mart 2019) Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products. Duzce University Journal of Science and Technology 7 2 147–157.
IEEE M. Kam, H. Saruhan, ve A. İpekçi, “Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products”, DÜBİTED, c. 7, sy. 2, ss. 147–157, 2019, doi: 10.29130/dubited.441221.
ISNAD Kam, Menderes vd. “Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products”. Duzce University Journal of Science and Technology 7/2 (Mart 2019), 147-157. https://doi.org/10.29130/dubited.441221.
JAMA Kam M, Saruhan H, İpekçi A. Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products. DÜBİTED. 2019;7:147–157.
MLA Kam, Menderes vd. “Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products”. Duzce University Journal of Science and Technology, c. 7, sy. 2, 2019, ss. 147-5, doi:10.29130/dubited.441221.
Vancouver Kam M, Saruhan H, İpekçi A. Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products. DÜBİTED. 2019;7(2):147-5.

Cited By








MALZEME EKSTRÜZYONU İLE ÇALIŞAN 3B YAZICILARDA ÜRETİM SORUNLARI
International Journal of 3D Printing Technologies and Digital Industry
https://doi.org/10.46519/ij3dptdi.972834