Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties

Yıl 2019, Cilt:7 Sayı:2 (2019) (Özel Sayı), 89 - 97, 30.03.2019
https://doi.org/10.29130/dubited.467622

Öz

Titanium has the
most useful properties of the metal are corrosion resistance
strength-to-density ratio, the highest of any metallic element. In its
unalloyed condition, titanium is as strong as some steels but less dense. Due to its good features titanium can be
used in the composite as a matrix material. Titanium matrix composites
(TiMCs) can be used in various industries
such as automotive, airplanes and especially
biomaterials. Today, as carbon reinforcing material carbon nanotube (CNT),
graphite and graphene are used as reinforcing materials. The graphene has the
most remarkable properties in this
reinforced material due to its extraordinary mechanical features, low friction and high abrasion resistance. Composite
materials produced by using titanium and graphene may have remarkable
mechanical and microstructural properties. This
is conspicuous subject in recent years.



In the present study, graphene
(Gr) reinforced titanium composites were
produced by powder metallurgy method. The effect of various percentages
of graphene (0-0,15-0,30-0,45-0,60 wt.%) on the microstructure, density,
hardness and compressive strength of Ti composites have been investigated. From the mechanical tests after sintering at
1100oC for 120min. The highest hardness and the greatest compressive
strength were obtained for 0,30 wt.% Gr reinforced composites (520.2 HV and
1137 MPa) when compared
to pure titanium (419.8 HV and 780 MPa). The crystal phase and
microstructure of the composites were detected
by scanning electron microscopy (SEM) and X-ray diffractometer (XRD
). Better
mechanical properties were observed for Ti-Gr composite materials when compared
pure Ti. These kinds of composites promise the future for using especially the
field of biomaterials.

Kaynakça

  • [1] H. Attara, S. Hooyar Ehtemam-Haghighia, D. Kent and M.S. Darguscha, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” International Journal of Machine Tools and Manufacture, vol. 133, pp. 85–102, 2018.
  • [2] D. Banerjee and J.C. Williams, “Perspectives on titanium science and technology”, Acta Mater. vol. 61, pp.844–879, 2013.
  • [3] F. Yastımoğlu ve A. Özkan, “Tekrarlanan Yükler Altında Kompozit Malzemelerin Yapılarının İncelenmesini Amaçlayan Deney Aygıtı Tasarımı”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 5, pp. 56-66, 2017.
  • [4] V.M. Imayev, R.A. Gaisin and R.M. Imayev, “Microstructure and mechanical properties of near a titanium alloy based composites prepared in situ by casting and subjected to multiple hot forging”, Journal of Alloys and Compounds, vol. 762, pp. 555-564, 2018.
  • [5] C. Chunxiang, H. BaoMin, Z. Lichen and L. Shuangjin, “Titanium alloy production technology, market prospects and industry development”, Materials & Design, vol. 32, pp.1684-1691, 2011.
  • [6] M.G. Elkhateeb and Y.C. Shin, “Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface”, Materials and Design, vol. 155, pp.161–169, 2018.
  • [7] G. Lütjering and J.C. Williams, Titanium, Second Edition, Springer, pp. 367-382.
  • [8] A. Nieto, A. Bisht, D. Lahiri, C. Zhang and A. Agarwal, "Graphene reinforced metal and ceramic matrix composites: a review”, International Materials Reviews, vol. 62, pp. 241-302, 2016.
  • [9] M.C. Şenel and M. Gürbüz, E. Koç, “Fabrication and characterization of synergistic Al-SiCGNPs hybrid composites”, Composites Part B, vol. 154, pp.1–9, 2018.
  • [10] M.Rashad, F. Pan, A.Tang, Y.Lu, M. Asif, S. Hussain, J. She, J. Gou and J. Mao, “Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys”, Journal of Magnesium and Alloys, vol. 1, pp.242-248, 2013.
  • [11] Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo and S. Wang, “Reinforcement with graphene nanoflakes in titanium matrix composites, Journal of Alloys and Compounds”, vol. 696, pp.498-502, 2017.
  • [12] Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao and X.B. Liu, “Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers”, Materials and Design, vol. 109, pp.256–263, 2016.
  • [13] M. Gürbüz and T. Mutuk, “Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites”, Journal of Composite Materials, vol. 52, pp.543-551, 2017.
  • [14] X. Liu, J. Li, X. Yu, H. Fan, Q. Wang, S. Yan, L. Wang, “Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved Mechanical Properties”, Ceramics International, vol. 42, pp.165–172, 2016.
  • [15] X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y.Wu, Z.J. Fu and D.H. Yu, “Microstructure evolution and superior tensile properties of low content Graphene nanoplatelets reinforced pure Ti matrix composites.” Materials Science and Engineering A, vol. 687, pp.164–174, 2017.

Grafen-Titanyum (<30μm) Kompozitlerin Toz Metalurjisi Yöntemiyle Üretilmesi: Mikroyapi ve Mekanik Özellikler

Yıl 2019, Cilt:7 Sayı:2 (2019) (Özel Sayı), 89 - 97, 30.03.2019
https://doi.org/10.29130/dubited.467622

Öz

Titanyum, metalin en
kullanışlı özelliklerine sahip olup, korozyon direnci ve mukavemet-yoğunluk
oranı diğer metalik elementlere göre yüksektir. Alaşımsız durumda, titanyum
bazı çelikler kadar güçlü ama daha az yoğundur. Bu gibi özellikleri nedeniyle
titanyum kompozit malzeme içinde matris malzemesi olarak kullanılabilir.
Titanyum matrisli kompozitler (TMK'ler) otomotiv, uçak endüstrileri ve özellikle
biyomalzemeler gibi çeşitli endüstrilerde kullanılabilir. Bugün karbon takviye
malzemesi olarak karbon nanotüp (KNT), grafit ve grafen takviye malzemesi
olarak kullanılmaktadır. Grafen, olağanüstü mekanik özellikleri, düşük sürtünme
ve yüksek aşınma direnci nedeniyle bu takviyeli malzemeleri içinde en dikkat
çekici özelliklere sahiptir. Titanyum ve grafen kullanılarak üretilen kompozit
malzemeler, dikkate değer mekanik ve mikroyapısal özelliklere sahip olabilir.
Bu son yıllarda göze çarpan konulardan biridir.



Bu çalışmada grafen katkılı
titanyum kompozit malzemeler toz metalürjisi yöntemiyle üretilmiştir. Farklı
oranlarda (%ağ.0-0,15-0,30-0,45-0,60) katkılanmış olan grafenin titanyum
kompozitin yoğunluğunda, sertliğinde, basma dayanımında ve mikroyapısında
meydana getirdiği etkileri incelenmiştir. 1100oC ve 120dk.
sinterleme süresinden sonra en yüksek sertlik ve basma dayanımı değerleri
(520,2HV ve 1137MPa) saf titanyum ile karşılaştırıldığında (419,8HV ve 780MPa)
%ağ. 0.30 grafen katkılanmış kompozit numunede elde edilmiştir. Kompozitlerin
kristal fazı ve mikroyapıları taramalı elektron mikroskobu (SEM) ve X-ışını
difraktometresi (XRD) ile tespit edilmiştir. Ti-Gr kompozit malzemelerin saf
titanyumdan daha iyi mekanik özellikler gösterdiği gözlenmiştir. Bu tür
kompozitler, özellikle biyomalzeme alanlarını kullanmak için gelecek vaat
etmektedir.

Kaynakça

  • [1] H. Attara, S. Hooyar Ehtemam-Haghighia, D. Kent and M.S. Darguscha, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” International Journal of Machine Tools and Manufacture, vol. 133, pp. 85–102, 2018.
  • [2] D. Banerjee and J.C. Williams, “Perspectives on titanium science and technology”, Acta Mater. vol. 61, pp.844–879, 2013.
  • [3] F. Yastımoğlu ve A. Özkan, “Tekrarlanan Yükler Altında Kompozit Malzemelerin Yapılarının İncelenmesini Amaçlayan Deney Aygıtı Tasarımı”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 5, pp. 56-66, 2017.
  • [4] V.M. Imayev, R.A. Gaisin and R.M. Imayev, “Microstructure and mechanical properties of near a titanium alloy based composites prepared in situ by casting and subjected to multiple hot forging”, Journal of Alloys and Compounds, vol. 762, pp. 555-564, 2018.
  • [5] C. Chunxiang, H. BaoMin, Z. Lichen and L. Shuangjin, “Titanium alloy production technology, market prospects and industry development”, Materials & Design, vol. 32, pp.1684-1691, 2011.
  • [6] M.G. Elkhateeb and Y.C. Shin, “Molecular dynamics-based cohesive zone representation of Ti6Al4V/TiC composite interface”, Materials and Design, vol. 155, pp.161–169, 2018.
  • [7] G. Lütjering and J.C. Williams, Titanium, Second Edition, Springer, pp. 367-382.
  • [8] A. Nieto, A. Bisht, D. Lahiri, C. Zhang and A. Agarwal, "Graphene reinforced metal and ceramic matrix composites: a review”, International Materials Reviews, vol. 62, pp. 241-302, 2016.
  • [9] M.C. Şenel and M. Gürbüz, E. Koç, “Fabrication and characterization of synergistic Al-SiCGNPs hybrid composites”, Composites Part B, vol. 154, pp.1–9, 2018.
  • [10] M.Rashad, F. Pan, A.Tang, Y.Lu, M. Asif, S. Hussain, J. She, J. Gou and J. Mao, “Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys”, Journal of Magnesium and Alloys, vol. 1, pp.242-248, 2013.
  • [11] Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo and S. Wang, “Reinforcement with graphene nanoflakes in titanium matrix composites, Journal of Alloys and Compounds”, vol. 696, pp.498-502, 2017.
  • [12] Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao and X.B. Liu, “Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers”, Materials and Design, vol. 109, pp.256–263, 2016.
  • [13] M. Gürbüz and T. Mutuk, “Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites”, Journal of Composite Materials, vol. 52, pp.543-551, 2017.
  • [14] X. Liu, J. Li, X. Yu, H. Fan, Q. Wang, S. Yan, L. Wang, “Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved Mechanical Properties”, Ceramics International, vol. 42, pp.165–172, 2016.
  • [15] X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y.Wu, Z.J. Fu and D.H. Yu, “Microstructure evolution and superior tensile properties of low content Graphene nanoplatelets reinforced pure Ti matrix composites.” Materials Science and Engineering A, vol. 687, pp.164–174, 2017.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuğba Mutuk

Mevlüt Gürbüz

Yayımlanma Tarihi 30 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt:7 Sayı:2 (2019) (Özel Sayı)

Kaynak Göster

APA Mutuk, T., & Gürbüz, M. (2019). Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties. Duzce University Journal of Science and Technology, 7(2), 89-97. https://doi.org/10.29130/dubited.467622
AMA Mutuk T, Gürbüz M. Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties. DÜBİTED. Mart 2019;7(2):89-97. doi:10.29130/dubited.467622
Chicago Mutuk, Tuğba, ve Mevlüt Gürbüz. “Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties”. Duzce University Journal of Science and Technology 7, sy. 2 (Mart 2019): 89-97. https://doi.org/10.29130/dubited.467622.
EndNote Mutuk T, Gürbüz M (01 Mart 2019) Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties. Duzce University Journal of Science and Technology 7 2 89–97.
IEEE T. Mutuk ve M. Gürbüz, “Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties”, DÜBİTED, c. 7, sy. 2, ss. 89–97, 2019, doi: 10.29130/dubited.467622.
ISNAD Mutuk, Tuğba - Gürbüz, Mevlüt. “Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties”. Duzce University Journal of Science and Technology 7/2 (Mart 2019), 89-97. https://doi.org/10.29130/dubited.467622.
JAMA Mutuk T, Gürbüz M. Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties. DÜBİTED. 2019;7:89–97..
MLA Mutuk, Tuğba ve Mevlüt Gürbüz. “Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties”. Duzce University Journal of Science and Technology, c. 7, sy. 2, 2019, ss. 89-97, doi:10.29130/dubited.467622.
Vancouver Mutuk T, Gürbüz M. Fabricating Graphene-Titanium (<30μm) Composites by Powder Metallurgy Method: Microstructure and Mechanical Properties. DÜBİTED. 2019;7(2):89-97.