Derleme
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 7 Sayı: 3, 1466 - 1487, 31.07.2019
https://doi.org/10.29130/dubited.536359

Öz

Kaynakça

  • [1] K. S. Lokesh, I. C. Chethan, N. Kumar, and V. Kannantha, “Determination of Compressive Strength of Graphene Reinforced with Aluminium-7075 Metal Matrix Composites,” International Journal of Mechanical Engineering & Technology, vol. 9, no. 1, pp. 327–335, 2018.
  • [2] D. Surrya Prakash, R. Mariappan, J. Viswanathan Anand, D. Jana Sundar, and K. Dinesh, “A review on latest development of aluminium alloy metal matrix composite through powder metallurgy route,” International Journal of Mechanical and Production Engineering Research and Development, vol. 2018, no. Special Is, pp. 235–241, 2018.
  • [3] S. Pournaderi and F. Akhlaghi, “Wear behaviour of Al6061-Al2O3composites produced by in-situ powder metallurgy (IPM),” Powder Technology, vol. 313, pp. 184–190, 2017.
  • [4] H. Izadi, A. Nolting, C. Munro, D. P. Bishop, K. P. Plucknett, and A. P. Gerlich, “Friction stir processing of Al/SiC composites fabricated by powder metallurgy,” The Journal of Materials Processing Technology, vol. 213, no. 11, pp. 1900–1907, 2013.
  • [5] H. Arik, “Effect of mechanical alloying process on mechanical properties of α-Si3N4 reinforced aluminum-based composite materials,” Materials and Design, vol. 29, no. 9, pp. 1856–1861, 2008.
  • [6] H. Alihosseini, K. Dehghani, and J. Kamali, “Microstructure characterization, mechanical properties, compressibility and sintering behavior of Al-B4C nanocomposite powders,” Advanced Powder Technology, vol. 28, no. 9, pp. 2126–2134, 2017.
  • [7] A. Pattnayak, N. Madhu, A. S. Panda, M. K. Sahoo, and K. Mohanta, “A Comparative study on mechanical properties of Al-SiO2 composites fabricated using rice husk silica in crystalline and amorphous form as reinforcement,” Materials Today: Proceedings, 2018, vol. 5, no. 2, pp. 8184–8192.
  • [8] M. Ramachandra, A. Abhishek, P. Siddeshwar, and V. Bharathi, “Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy,” Procedia Materials Science, vol. 10, pp. 212–219, 2015.
  • [9] A. Pakdel, A. Witecka, G. Rydzek, and D. N. Awang Shri, “A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering,” Materials&Design, vol. 119, pp. 225–234, 2017.
  • [10] H. G. Prashantha Kumar and M. Anthony Xavior, “Processing and Characterization of Al 6061 - Graphene Nanocomposites,” Materials Today: Proceedings, 2017, vol. 4, no. 2, pp. 3308–3314.
  • [11] H. Arık, K. Kırmızı, and Y. Özçatalbaş, “TM Yöntemiyle Alumix13-B4C MMK Malzeme Üretimi ve Mekanik Özelliklerinin Araştırılması,” International Journal of Materials and Product Technology, ss. 1–9, 2017.
  • [12] H. Arık, G. Kırmızı, and P. Semerci, “Sıcak Presleme ile Alüminyum Matrisli ve Al2O3 Takviyeli Toz Metal Kompozit Malzeme Üretimi ve Abrasif Aşınma Davranışının Araştırılması,” Gazi Üniversitesi Fen Bilimleri Dergisi: PART:C “Tasarım ve Teknoloji” Dergisi, c. 5, s. 4, ss. 87–97, 2017.
  • [13] İ. Şahin, “Alüminyum Matrisli Kompozit Malzemelerin Matkap İle Delinmesi Konusunda Yapılan Çalışmaların İncelenmesi,” Mühendis ve Makina, c. 55, s. 649, ss. 9–16, 2014.
  • [14] P. Ashwath, P. Jeyapandiarajan, M. Anthony Xavior, R. Verma, N. Kumar Singh, and Varalaxshmi, “Heat Treating Studies of Graphene Reinforced Aluminium Metal Matrix Composite,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 11859–11863.
  • [15] M. Taştan, H. Gökozan, P. Sarı Çavdar, G. Soy, and U. Çavdar, “Energy Consumption Analysis of Sintering Temperature Optimization of Pure Aluminum Powder Metal Compacts Sintered by Using The UHFIS,” International Journal of Engineering Research and Development, vol. 9, no. 3, pp. 175–185, 2017.
  • [16] B. Akyuz and S. Şenaysoy, “Alüminyum Alaşımlarında Yaşlandırma İşleminin Mekanik Özellikler ve İşlenebilirlik Üzerindeki Etkisi Effect of Aging on Mechanical Properties and Machining on Aluminum Alloys,” Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, c. 2330, s. 1, ss. 1–9, 2014.
  • [17] A. Gökçe, F. Fındık, and A. O. Kurt, “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri Powder Metallurgy Processing of Aluminum Alloys,” Engineer&Machinery, c. 58, s. 686, ss. 21–47, 2017.
  • [18] J. R. Pickens, “Aluminium powder metallurgy technology for high-strength applications,” Journal of Materials Science, vol. 16, no. 6, pp. 1437–1457, 1981.
  • [19] M. C. Şenel, M. Gürbüz, and E. Koç, “Toz Metalürjisi Metoduyla Üretilen Al-Si3N4 Metal Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi.,” Mühendis ve Makina, c. 59, s. 693, ss. 33–46, 2018.
  • [20] S. H. Huo, M. Qian, G. B. Schaffer, and E. Crossin, “Aluminium powder metallurgy,” Fundamentals of Aluminium Metallurgy: Production, Processing and Applications, no. December, Woodhead Publishing Limited, 2010, pp. 655–701.
  • [21] T. A. Martin, D. H. Causey, A. L. Sheffner, A. G. Wheeler, and J. R. Currigan, “Amides of N-Acylcysteines as Mucolytic Agents,” Journal of Medicinal Chemistry, vol. 10, no. 6, pp. 1172–1176, 1967.
  • [22] T. Yildiz, N. Kati, and A. K. Gür, “The effect of sintering temperature on microstructure and mechanical properties of alloys produced by using hot isostatic pressing method,” Journal of Alloys and Compounds, vol. 737, pp. 8–13, 2018.
  • [23] T. Tsutsui, “Recent Technology of Powder Metallurgy and Applications,” Hitachi Chemical Technical Report No.54, no. 54, pp. 12–20, 2012.
  • [24] M. Şenel, M. Gurbuz, and E. Koç, “Grafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler,” Mühendis ve Makina, c. 56, ss. 36–47, 2015.
  • [25] M. C. Şenel, M. Gürbüz, and E. Koç, “Grafen takviyeli alüminyum esaslı kompozitlerin üretimi ve karakterizasyonu,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 23, s. 8, ss. 974–978, 2017.
  • [26] T. Varol, “Mekanik öğütme yöntemi ile üretilen mikronaltı Al2O3 seramik parçacıklarının fiziksel özellikleri üzerine öğütme zamanı, öğütme hızı ve bilye toz ağırlık oranının etkisi,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, s. 4, ss. 635–642, 2018.
  • [27] A. Pakdel, A. Witecka, G. Rydzek, and D. N. Awang Shri, “A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering,” Materials&Design, vol. 119, pp. 225–234, 2017.
  • [28] A. Simon, D. Lipusz, P. Baumli, P. Balint, G. Kaptay, G. Gergely, A. Sfikas, A. Lekatou, A. Karantzalis, and Z. Gacsi, “Microstructure and mechanical properties of Al-WC composites,” Archives Of Metallurgy and Materials, vol. 60, no. 2, pp. 1517–1521, 2015.
  • [29] N. Devi Chinta, N. Selvaraj, and V. Mahesh, “Characterization of aluminium-red mud-tungsten carbide hybrid metal matrix composite,” International Conference on Electrical, Electronics, and Optimization Techniques, pp. 3722–3725, 2016.
  • [30] A. Evirgen and M. L. Öveçoǧlu, “Characterization investigations of a mechanically alloyed and sintered Al-2 wt%Cu alloy reinforced with WC particles,” Journal of Alloys and Compounds, vol. 496, no. 1–2, pp. 212–217, 2010.
  • [31] B. Gnanasundarajayaraja and N. Selvakumar, “Effect of WC Content in Aluminium Metal Matrix Sintered Powder Composites,” European Journal of Scientific Research, vol. 10, no. 3, pp. 42–47, 2005.
  • [32] M. Razavi and I. Mobasherpour, “Production of aluminum nano-composite reinforced by tungsten carbide particles via mechanical milling and subsequent hot pressing,” International Journal of Materials Research, vol. 105, no. 11, pp. 1103–1110, 2014.
  • [33] S. S. Mirjavadi, M. Alipour, A. M. S. Hamouda, S. Kord, P. G. Koppad, Y. A. Abuzin, and R. Keshavamurthy, “Effect of hot extrusion and T6 heat treatment on microstructure and mechanical properties of Al-10Zn-3.5Mg-2.5Cu nanocomposite reinforced with graphene nanoplatelets,” Journal of Manufacturing Processes, vol. 36, pp. 264–271, 2018.
  • [34] S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, “Graphene-aluminum nanocomposites,” Materials Science and Engineering A, vol. 528, no. 27, pp. 7933–7937, 2011.
  • [35] H. G. G. P. Kumar and M. A. Xavior, “Assessment of Mechanical and Tribological Properties of Al 2024- SiC - Graphene Hybrid Composites,” Procedia Engineering, 2017, vol. 174, pp. 992–999.
  • [36] M. Anthony Xavior, H. G. Prashantha Kumar, and K. Ajith Kumar, “Tribological studies on AA 2024 -Graphene/CNT Nanocomposites processed through Powder Metallurgy,” Materials Today: Proceedings, 2018, vol. 5, no. 2, pp. 6588–6596.
  • [37] W. Yang, Q. Zhao, L. Xin, J. Qiao, J. Zou, P. Shao, Z. Yu, Q. Zhang, and G. Wu, “Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method,” Journal of Alloys and Compounds, vol. 732, pp. 748–758, 2018.
  • [38] A. Altintaş, U. Çavdar, and İ. M. Kuşoğlu, “The Effect of Graphene Nanoplatelets on the Wear Properties of High-Frequency Induction Sintered Alumina Nanocomposites,” Journal of Inorganic and Organometallic Polymers and Materials, pp. 1–9, 2018.
  • [39] H. C. Kim, D. Y. Oh, and I. J. Shon, “Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process,” The International Journal of Refractory Metals and Hard Materials, vol. 22, no. 4–5, pp. 197–203, 2004.
  • [40] H. C. Kim, I. J. Shon, and Z. A. Munir, “Rapid sintering of ultra-fine WC-10 wt% Co by high-frequency induction heating,” Journal of Material Science, vol. 40, no. 11, pp. 2849–2854, 2005.
  • [41] O. Emadinia, M. T. Vieira, and M. F. Vieira, “Effect of reinforcement type and dispersion on the hardening of sintered pure aluminium,” Metals (Basel), vol. 8, no. 10, pp. 1–16, 2018.
  • [42] E. Ghasali, A. H. Pakseresht, M. Agheli, A. H. Marzbanpour, T. Ebadzadeh, I. K. Blvd, and S. Technical, “WC-Co Particles Reinforced Aluminum Matrix by Conventional and Microwave Sintering,” Journal of Materials Research, vol. 18, no. 6, pp. 1197–1202, 2015.
  • [43] Y. Z. Li, Q. Z. Wang, B. L. Xiao, and Z. Y. Ma, “Fabrication and Welding of Aluminum Matrix Composite Reinforced with WC and B4C Particles,” The Journal of Materials Science, vol. 46, pp. 1470–1481, 2013.
  • [44] S. Jerry, A. Fabian, and B. Selvam, “Densification behaviour of Aluminium reinforced with Tungsten Carbide particulate Metal Matrix Composite processed by P/M,” IOSR Journal of Mechanical and Civil Engineering, pp. 24–29, 2014.
  • [45] P. Ashwath, P. Jeyapandiarajan, J. Joel, H. G. Prashantha Kumar, M. Anthony Xavior, N. Sumanth, C. Saketh Reddy, and Deepa, “Flexural studies of graphene reinforced aluminium metal matrix composite,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 13459–13463.
  • [46] P. Ashwath, J. Joel, H. G. G. P. Kumar, M. A. Xavior, A. Goel, T. Nigam, and M. Rathi, “Processing and characterization of extruded 2024 series of aluminum alloy,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 12479–12483.
  • [47] I. J. Shon, I. K. Jeong, I. Y. Ko, J. M. Doh, and K. Do Woo, “Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering,” Ceramic International, vol. 35, no. 1, pp. 339–344, 2009.
  • [48] I. J. Shon, “High-frequency induction-heated consolidation of nanostructured WC and WC-Al hard materials and their mechanical properties,” The International Journal of Refractory Metals and Hard Materials, vol. 64, pp. 242–247, 2017.
  • [49] A. Lekatou, A. E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, and A. Simon, “Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour,” Material&Design, vol. 65, pp. 1121–1135, 2015.
  • [50] I. J. Shon, “Effect of Al on sintering and mechanical properties of WC-Al composites,” Ceramic International, vol. 42, no. 15, pp. 17884–17891, 2016.
  • [51] K. Ravikumar, K. Kiran, and V. S. Sreebalaji, “Characterization of mechanical properties of aluminium/tungsten carbide composites,” Measurement: Journal of the International Measurement Confederation, vol. 102, pp. 142–149, 2017.
  • [52] S.-J. Oh, B.-S. Kim, and I.-J. Shon, “Mechanical properties and rapid consolidation of nanostructured WC and WC–Al2O3 composites by high-frequency induction-heated sintering,” The International Journal of Refractory Metals and Hard Materials, vol. 58, pp. 189–195, 2016.
  • [53] A. R. K. Swamy, A. Ramesha, G. B. V. Kumar, and J. N. Prakash, “Effect of Particulate Reinforcements on the Mechanical Properties of Al6061-WC and Al6061-Gr MMCs,” Journal of Minerals and Materials Characterization and Engineering, vol. 10, no. 12, pp. 1141–1152, 2011.
  • [54] T. Muthuramalingam, W. Zhenyu, C. Fenghong, G. Anbuchezhiyan, and C. Chang, “Effects of Silicon Carbide and Tungsten Carbide in Aluminium Metal Matrix Composites,” Silicon, pp. 1–8, 2019.
  • [55] Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, “Graphene-reinforced metal matrix nanocomposites - A review,” Materials Science & Technology (United Kingdom), vol. 32, no. 9, pp. 930–953, 2016.
  • [56] C. Y. Liu, Q. Wang, Y. Z. Jia, B. Zhang, R. Jing, M. Z. Ma, Q. Jing, and R. P. Liu, “Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process,” Materials&Design, vol. 43, pp. 367–372, 2013.
  • [57] K. Ravikumar, K. Kiran, and V. S. Sreebalaji, “Characterization of mechanical properties of aluminium/tungsten carbide composites,” Measurement: Journal of the International Measurement Confederation, vol. 102, pp. 142–149, 2017.
  • [58] D. S. S. E. Jacob Dhas, C. Velmurugan, K. L. D. Wins, and K. P. BoopathiRaja, “Effect of tungsten carbide, silicon carbide and graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites,” Ceramic International, vol. 45, no. 1, pp. 614–621, 2019.
  • [59] B. Vijaya Ramnath, J. Jeykrishnan, S. Akilesh, B. Saravanan, and V. Krishna Vivek, “Investigation of Micro-structure and Mechanical Behaviour of Aluminum - Zircon Sand - Tungsten Carbide Metal Matrix Composites,” Materials Today: Proceedings, 2018, vol. 5, no. 11, pp. 25553–25561.
  • [60] Q. Liang, C. Mao, J. Yang, and J. Du, “Analyse of the interfacial reaction in WCp/2024Al composites,” Fenmo Yejin Jishu/Powder Metallurgy Technology, vol. 27, no. 5, pp. 327–330, 2009.
  • [61] S. Arivukkarasan, V. Dhanalakshmi, B. Stalin, and M. Ravichandran, “Mechanical and tribological behaviour of tungsten carbide reinforced aluminum LM4 matrix composites,” Particulate Science and Technology, vol. 36, no. 8, pp. 967–973, 2018.
  • [62] U. Çavdar and O. Akkurt, “The Effect of Sintering on the Microstructure, Hardness, and Tribological Behavior of Aluminum–Graphene Nanoplatelet Powder Composites,” Powder Metallurgy and Metal Ceramics, vol. 57, no. 5–6, pp. 265–271, 2018.
  • [63] L. C. Kumruoğlu, “Alüminyum-Magnezyum-Zirkonyum Alaşımına Grafen-Nano Karbon Esaslı Takviyelerin, Fiziksel ve Mekanik Özelliklere Etkisinin İncelenmesi,” Academic Platform-Journal of Engineering and Science, c. 7, s. 2, ss. 1–8, 2019.
  • [64] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (80-. ), vol. 321, no. 5887, pp. 385–388, 2008.
  • [65] S. Kandemir, “Grafen Nanolevha Takviyesinin AlSi10Mg Alaşımının Mikroyapı ve Mekanik Özellikleri Üzerine Etkisi,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C Tasarım ve Teknoloji, c. 6, s. 1, ss. 177–187, 2018.
  • [66] P. B. Prakash, K. B. Raju, K. Venkatasubbaiah, and N. Manikandan, “Microstructure Analysis and Evaluation of Mechanical Properties of Al 7075 GNP’s Composites,” Materials Today: Proceedings, 2018, vol. 5, no. 6, pp. 14281–14291.
  • [67] M. Anthony Xavior, N. Ranganathan, H. G. Prashantha Kumar, J. Joel, and P. Ashwath, “Mechanical properties evaluation of hot extruded AA 2024 -Graphene Nanocomposites,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 12519–12524.
  • [68] X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Materials&Design, vol. 94, pp. 54–60, 2016.
  • [69] G. Li and B. Xiong, “Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites,” Journal of Alloys and Compounds, vol. 697, pp. 31–36, 2017.
  • [70] H. Zhang, C. Xu, W. Xiao, K. Ameyama, and C. Ma, “Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion,” Materials Science and Engineering A, vol. 658, pp. 8–15, 2016.
  • [71] G. Li and B. Xiong, “Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites,” Journal of Alloys and Compounds, vol. 697, pp. 31–36, 2017.
  • [72] M. C. Şenel, M. Gürbüz, and E. Koç, “Fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites,” Composites Part B Engineering, vol. 154, pp. 1–9, 2018.
  • [73] M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Science: Material International, vol. 24, no. 2, pp. 101–108, 2014.
  • [74] M. C. Şenel, M. Gürbüz, and E. Koç, “Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets,” Materials Science and Technology. (United Kingdom), vol. 34, no. 16, pp. 1980–1989, 2018.
  • [75] M. Rashad, H. Lin, R. Pan, Z. Yu, F. Pan, and M. Asif, “Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets,” Progress in Natural Science: Material International, vol. 25, no. 5, pp. 460–470, 2015.
  • [76] M. Gürbüz, M. Can Şenel, and E. Koç, “The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites,” Journal of Composites Materials, vol. 52, no. 4, pp. 553–563, 2018.

Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma

Yıl 2019, Cilt: 7 Sayı: 3, 1466 - 1487, 31.07.2019
https://doi.org/10.29130/dubited.536359

Öz

Teknolojinin
hızla gelişmesi ile birlikte
,
imalat, havacılık ve otomotiv sektörlerinde yaygın olarak kullanılan standart
malzemeler yerini yeni nesil yüksek mukavemete ve hafifliğe sahip malzemelere
bırakmaktadır.
Özellikle, Tungsten karbür (WC) ve Grafenin
sahip olduğu yüksek termal ve elektriksel özellikler, yüksek elastisite modülü,
yüksek mukavemet gibi üstün özellikleri sayesinde alüminyum matrisli kompozit
malzeme üretiminde büyük etki ve avantajlara sahiptir. Bu çalışmada, WC ve
Grafen takviyelerinin alüminyum matrisli kompozit malzemelerin mekanik
özelliklerine etkisi ile ilgili çalışmalar incelenerek sunulmuştur. Alüminyum
matrisli kompozitlerin mekanik özelliklerinin iyileştirilmesinde %20'ye kadar
WC ve %0.7'ye kadar grafen katkısının etkili olduğu raporlanmıştır.
Grafen
ilavesinin %0.5’ten fazla
arttırılması topaklanmalara, WC ilavesinin %30’dan
fazla arttırılması ise gözenekliğin artmasına ve mekanik özelliklerin
azalmasına neden olmaktadır. 

Kaynakça

  • [1] K. S. Lokesh, I. C. Chethan, N. Kumar, and V. Kannantha, “Determination of Compressive Strength of Graphene Reinforced with Aluminium-7075 Metal Matrix Composites,” International Journal of Mechanical Engineering & Technology, vol. 9, no. 1, pp. 327–335, 2018.
  • [2] D. Surrya Prakash, R. Mariappan, J. Viswanathan Anand, D. Jana Sundar, and K. Dinesh, “A review on latest development of aluminium alloy metal matrix composite through powder metallurgy route,” International Journal of Mechanical and Production Engineering Research and Development, vol. 2018, no. Special Is, pp. 235–241, 2018.
  • [3] S. Pournaderi and F. Akhlaghi, “Wear behaviour of Al6061-Al2O3composites produced by in-situ powder metallurgy (IPM),” Powder Technology, vol. 313, pp. 184–190, 2017.
  • [4] H. Izadi, A. Nolting, C. Munro, D. P. Bishop, K. P. Plucknett, and A. P. Gerlich, “Friction stir processing of Al/SiC composites fabricated by powder metallurgy,” The Journal of Materials Processing Technology, vol. 213, no. 11, pp. 1900–1907, 2013.
  • [5] H. Arik, “Effect of mechanical alloying process on mechanical properties of α-Si3N4 reinforced aluminum-based composite materials,” Materials and Design, vol. 29, no. 9, pp. 1856–1861, 2008.
  • [6] H. Alihosseini, K. Dehghani, and J. Kamali, “Microstructure characterization, mechanical properties, compressibility and sintering behavior of Al-B4C nanocomposite powders,” Advanced Powder Technology, vol. 28, no. 9, pp. 2126–2134, 2017.
  • [7] A. Pattnayak, N. Madhu, A. S. Panda, M. K. Sahoo, and K. Mohanta, “A Comparative study on mechanical properties of Al-SiO2 composites fabricated using rice husk silica in crystalline and amorphous form as reinforcement,” Materials Today: Proceedings, 2018, vol. 5, no. 2, pp. 8184–8192.
  • [8] M. Ramachandra, A. Abhishek, P. Siddeshwar, and V. Bharathi, “Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy,” Procedia Materials Science, vol. 10, pp. 212–219, 2015.
  • [9] A. Pakdel, A. Witecka, G. Rydzek, and D. N. Awang Shri, “A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering,” Materials&Design, vol. 119, pp. 225–234, 2017.
  • [10] H. G. Prashantha Kumar and M. Anthony Xavior, “Processing and Characterization of Al 6061 - Graphene Nanocomposites,” Materials Today: Proceedings, 2017, vol. 4, no. 2, pp. 3308–3314.
  • [11] H. Arık, K. Kırmızı, and Y. Özçatalbaş, “TM Yöntemiyle Alumix13-B4C MMK Malzeme Üretimi ve Mekanik Özelliklerinin Araştırılması,” International Journal of Materials and Product Technology, ss. 1–9, 2017.
  • [12] H. Arık, G. Kırmızı, and P. Semerci, “Sıcak Presleme ile Alüminyum Matrisli ve Al2O3 Takviyeli Toz Metal Kompozit Malzeme Üretimi ve Abrasif Aşınma Davranışının Araştırılması,” Gazi Üniversitesi Fen Bilimleri Dergisi: PART:C “Tasarım ve Teknoloji” Dergisi, c. 5, s. 4, ss. 87–97, 2017.
  • [13] İ. Şahin, “Alüminyum Matrisli Kompozit Malzemelerin Matkap İle Delinmesi Konusunda Yapılan Çalışmaların İncelenmesi,” Mühendis ve Makina, c. 55, s. 649, ss. 9–16, 2014.
  • [14] P. Ashwath, P. Jeyapandiarajan, M. Anthony Xavior, R. Verma, N. Kumar Singh, and Varalaxshmi, “Heat Treating Studies of Graphene Reinforced Aluminium Metal Matrix Composite,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 11859–11863.
  • [15] M. Taştan, H. Gökozan, P. Sarı Çavdar, G. Soy, and U. Çavdar, “Energy Consumption Analysis of Sintering Temperature Optimization of Pure Aluminum Powder Metal Compacts Sintered by Using The UHFIS,” International Journal of Engineering Research and Development, vol. 9, no. 3, pp. 175–185, 2017.
  • [16] B. Akyuz and S. Şenaysoy, “Alüminyum Alaşımlarında Yaşlandırma İşleminin Mekanik Özellikler ve İşlenebilirlik Üzerindeki Etkisi Effect of Aging on Mechanical Properties and Machining on Aluminum Alloys,” Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, c. 2330, s. 1, ss. 1–9, 2014.
  • [17] A. Gökçe, F. Fındık, and A. O. Kurt, “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri Powder Metallurgy Processing of Aluminum Alloys,” Engineer&Machinery, c. 58, s. 686, ss. 21–47, 2017.
  • [18] J. R. Pickens, “Aluminium powder metallurgy technology for high-strength applications,” Journal of Materials Science, vol. 16, no. 6, pp. 1437–1457, 1981.
  • [19] M. C. Şenel, M. Gürbüz, and E. Koç, “Toz Metalürjisi Metoduyla Üretilen Al-Si3N4 Metal Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi.,” Mühendis ve Makina, c. 59, s. 693, ss. 33–46, 2018.
  • [20] S. H. Huo, M. Qian, G. B. Schaffer, and E. Crossin, “Aluminium powder metallurgy,” Fundamentals of Aluminium Metallurgy: Production, Processing and Applications, no. December, Woodhead Publishing Limited, 2010, pp. 655–701.
  • [21] T. A. Martin, D. H. Causey, A. L. Sheffner, A. G. Wheeler, and J. R. Currigan, “Amides of N-Acylcysteines as Mucolytic Agents,” Journal of Medicinal Chemistry, vol. 10, no. 6, pp. 1172–1176, 1967.
  • [22] T. Yildiz, N. Kati, and A. K. Gür, “The effect of sintering temperature on microstructure and mechanical properties of alloys produced by using hot isostatic pressing method,” Journal of Alloys and Compounds, vol. 737, pp. 8–13, 2018.
  • [23] T. Tsutsui, “Recent Technology of Powder Metallurgy and Applications,” Hitachi Chemical Technical Report No.54, no. 54, pp. 12–20, 2012.
  • [24] M. Şenel, M. Gurbuz, and E. Koç, “Grafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler,” Mühendis ve Makina, c. 56, ss. 36–47, 2015.
  • [25] M. C. Şenel, M. Gürbüz, and E. Koç, “Grafen takviyeli alüminyum esaslı kompozitlerin üretimi ve karakterizasyonu,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 23, s. 8, ss. 974–978, 2017.
  • [26] T. Varol, “Mekanik öğütme yöntemi ile üretilen mikronaltı Al2O3 seramik parçacıklarının fiziksel özellikleri üzerine öğütme zamanı, öğütme hızı ve bilye toz ağırlık oranının etkisi,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, s. 4, ss. 635–642, 2018.
  • [27] A. Pakdel, A. Witecka, G. Rydzek, and D. N. Awang Shri, “A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering,” Materials&Design, vol. 119, pp. 225–234, 2017.
  • [28] A. Simon, D. Lipusz, P. Baumli, P. Balint, G. Kaptay, G. Gergely, A. Sfikas, A. Lekatou, A. Karantzalis, and Z. Gacsi, “Microstructure and mechanical properties of Al-WC composites,” Archives Of Metallurgy and Materials, vol. 60, no. 2, pp. 1517–1521, 2015.
  • [29] N. Devi Chinta, N. Selvaraj, and V. Mahesh, “Characterization of aluminium-red mud-tungsten carbide hybrid metal matrix composite,” International Conference on Electrical, Electronics, and Optimization Techniques, pp. 3722–3725, 2016.
  • [30] A. Evirgen and M. L. Öveçoǧlu, “Characterization investigations of a mechanically alloyed and sintered Al-2 wt%Cu alloy reinforced with WC particles,” Journal of Alloys and Compounds, vol. 496, no. 1–2, pp. 212–217, 2010.
  • [31] B. Gnanasundarajayaraja and N. Selvakumar, “Effect of WC Content in Aluminium Metal Matrix Sintered Powder Composites,” European Journal of Scientific Research, vol. 10, no. 3, pp. 42–47, 2005.
  • [32] M. Razavi and I. Mobasherpour, “Production of aluminum nano-composite reinforced by tungsten carbide particles via mechanical milling and subsequent hot pressing,” International Journal of Materials Research, vol. 105, no. 11, pp. 1103–1110, 2014.
  • [33] S. S. Mirjavadi, M. Alipour, A. M. S. Hamouda, S. Kord, P. G. Koppad, Y. A. Abuzin, and R. Keshavamurthy, “Effect of hot extrusion and T6 heat treatment on microstructure and mechanical properties of Al-10Zn-3.5Mg-2.5Cu nanocomposite reinforced with graphene nanoplatelets,” Journal of Manufacturing Processes, vol. 36, pp. 264–271, 2018.
  • [34] S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, “Graphene-aluminum nanocomposites,” Materials Science and Engineering A, vol. 528, no. 27, pp. 7933–7937, 2011.
  • [35] H. G. G. P. Kumar and M. A. Xavior, “Assessment of Mechanical and Tribological Properties of Al 2024- SiC - Graphene Hybrid Composites,” Procedia Engineering, 2017, vol. 174, pp. 992–999.
  • [36] M. Anthony Xavior, H. G. Prashantha Kumar, and K. Ajith Kumar, “Tribological studies on AA 2024 -Graphene/CNT Nanocomposites processed through Powder Metallurgy,” Materials Today: Proceedings, 2018, vol. 5, no. 2, pp. 6588–6596.
  • [37] W. Yang, Q. Zhao, L. Xin, J. Qiao, J. Zou, P. Shao, Z. Yu, Q. Zhang, and G. Wu, “Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method,” Journal of Alloys and Compounds, vol. 732, pp. 748–758, 2018.
  • [38] A. Altintaş, U. Çavdar, and İ. M. Kuşoğlu, “The Effect of Graphene Nanoplatelets on the Wear Properties of High-Frequency Induction Sintered Alumina Nanocomposites,” Journal of Inorganic and Organometallic Polymers and Materials, pp. 1–9, 2018.
  • [39] H. C. Kim, D. Y. Oh, and I. J. Shon, “Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process,” The International Journal of Refractory Metals and Hard Materials, vol. 22, no. 4–5, pp. 197–203, 2004.
  • [40] H. C. Kim, I. J. Shon, and Z. A. Munir, “Rapid sintering of ultra-fine WC-10 wt% Co by high-frequency induction heating,” Journal of Material Science, vol. 40, no. 11, pp. 2849–2854, 2005.
  • [41] O. Emadinia, M. T. Vieira, and M. F. Vieira, “Effect of reinforcement type and dispersion on the hardening of sintered pure aluminium,” Metals (Basel), vol. 8, no. 10, pp. 1–16, 2018.
  • [42] E. Ghasali, A. H. Pakseresht, M. Agheli, A. H. Marzbanpour, T. Ebadzadeh, I. K. Blvd, and S. Technical, “WC-Co Particles Reinforced Aluminum Matrix by Conventional and Microwave Sintering,” Journal of Materials Research, vol. 18, no. 6, pp. 1197–1202, 2015.
  • [43] Y. Z. Li, Q. Z. Wang, B. L. Xiao, and Z. Y. Ma, “Fabrication and Welding of Aluminum Matrix Composite Reinforced with WC and B4C Particles,” The Journal of Materials Science, vol. 46, pp. 1470–1481, 2013.
  • [44] S. Jerry, A. Fabian, and B. Selvam, “Densification behaviour of Aluminium reinforced with Tungsten Carbide particulate Metal Matrix Composite processed by P/M,” IOSR Journal of Mechanical and Civil Engineering, pp. 24–29, 2014.
  • [45] P. Ashwath, P. Jeyapandiarajan, J. Joel, H. G. Prashantha Kumar, M. Anthony Xavior, N. Sumanth, C. Saketh Reddy, and Deepa, “Flexural studies of graphene reinforced aluminium metal matrix composite,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 13459–13463.
  • [46] P. Ashwath, J. Joel, H. G. G. P. Kumar, M. A. Xavior, A. Goel, T. Nigam, and M. Rathi, “Processing and characterization of extruded 2024 series of aluminum alloy,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 12479–12483.
  • [47] I. J. Shon, I. K. Jeong, I. Y. Ko, J. M. Doh, and K. Do Woo, “Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering,” Ceramic International, vol. 35, no. 1, pp. 339–344, 2009.
  • [48] I. J. Shon, “High-frequency induction-heated consolidation of nanostructured WC and WC-Al hard materials and their mechanical properties,” The International Journal of Refractory Metals and Hard Materials, vol. 64, pp. 242–247, 2017.
  • [49] A. Lekatou, A. E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, and A. Simon, “Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour,” Material&Design, vol. 65, pp. 1121–1135, 2015.
  • [50] I. J. Shon, “Effect of Al on sintering and mechanical properties of WC-Al composites,” Ceramic International, vol. 42, no. 15, pp. 17884–17891, 2016.
  • [51] K. Ravikumar, K. Kiran, and V. S. Sreebalaji, “Characterization of mechanical properties of aluminium/tungsten carbide composites,” Measurement: Journal of the International Measurement Confederation, vol. 102, pp. 142–149, 2017.
  • [52] S.-J. Oh, B.-S. Kim, and I.-J. Shon, “Mechanical properties and rapid consolidation of nanostructured WC and WC–Al2O3 composites by high-frequency induction-heated sintering,” The International Journal of Refractory Metals and Hard Materials, vol. 58, pp. 189–195, 2016.
  • [53] A. R. K. Swamy, A. Ramesha, G. B. V. Kumar, and J. N. Prakash, “Effect of Particulate Reinforcements on the Mechanical Properties of Al6061-WC and Al6061-Gr MMCs,” Journal of Minerals and Materials Characterization and Engineering, vol. 10, no. 12, pp. 1141–1152, 2011.
  • [54] T. Muthuramalingam, W. Zhenyu, C. Fenghong, G. Anbuchezhiyan, and C. Chang, “Effects of Silicon Carbide and Tungsten Carbide in Aluminium Metal Matrix Composites,” Silicon, pp. 1–8, 2019.
  • [55] Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, “Graphene-reinforced metal matrix nanocomposites - A review,” Materials Science & Technology (United Kingdom), vol. 32, no. 9, pp. 930–953, 2016.
  • [56] C. Y. Liu, Q. Wang, Y. Z. Jia, B. Zhang, R. Jing, M. Z. Ma, Q. Jing, and R. P. Liu, “Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process,” Materials&Design, vol. 43, pp. 367–372, 2013.
  • [57] K. Ravikumar, K. Kiran, and V. S. Sreebalaji, “Characterization of mechanical properties of aluminium/tungsten carbide composites,” Measurement: Journal of the International Measurement Confederation, vol. 102, pp. 142–149, 2017.
  • [58] D. S. S. E. Jacob Dhas, C. Velmurugan, K. L. D. Wins, and K. P. BoopathiRaja, “Effect of tungsten carbide, silicon carbide and graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites,” Ceramic International, vol. 45, no. 1, pp. 614–621, 2019.
  • [59] B. Vijaya Ramnath, J. Jeykrishnan, S. Akilesh, B. Saravanan, and V. Krishna Vivek, “Investigation of Micro-structure and Mechanical Behaviour of Aluminum - Zircon Sand - Tungsten Carbide Metal Matrix Composites,” Materials Today: Proceedings, 2018, vol. 5, no. 11, pp. 25553–25561.
  • [60] Q. Liang, C. Mao, J. Yang, and J. Du, “Analyse of the interfacial reaction in WCp/2024Al composites,” Fenmo Yejin Jishu/Powder Metallurgy Technology, vol. 27, no. 5, pp. 327–330, 2009.
  • [61] S. Arivukkarasan, V. Dhanalakshmi, B. Stalin, and M. Ravichandran, “Mechanical and tribological behaviour of tungsten carbide reinforced aluminum LM4 matrix composites,” Particulate Science and Technology, vol. 36, no. 8, pp. 967–973, 2018.
  • [62] U. Çavdar and O. Akkurt, “The Effect of Sintering on the Microstructure, Hardness, and Tribological Behavior of Aluminum–Graphene Nanoplatelet Powder Composites,” Powder Metallurgy and Metal Ceramics, vol. 57, no. 5–6, pp. 265–271, 2018.
  • [63] L. C. Kumruoğlu, “Alüminyum-Magnezyum-Zirkonyum Alaşımına Grafen-Nano Karbon Esaslı Takviyelerin, Fiziksel ve Mekanik Özelliklere Etkisinin İncelenmesi,” Academic Platform-Journal of Engineering and Science, c. 7, s. 2, ss. 1–8, 2019.
  • [64] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (80-. ), vol. 321, no. 5887, pp. 385–388, 2008.
  • [65] S. Kandemir, “Grafen Nanolevha Takviyesinin AlSi10Mg Alaşımının Mikroyapı ve Mekanik Özellikleri Üzerine Etkisi,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C Tasarım ve Teknoloji, c. 6, s. 1, ss. 177–187, 2018.
  • [66] P. B. Prakash, K. B. Raju, K. Venkatasubbaiah, and N. Manikandan, “Microstructure Analysis and Evaluation of Mechanical Properties of Al 7075 GNP’s Composites,” Materials Today: Proceedings, 2018, vol. 5, no. 6, pp. 14281–14291.
  • [67] M. Anthony Xavior, N. Ranganathan, H. G. Prashantha Kumar, J. Joel, and P. Ashwath, “Mechanical properties evaluation of hot extruded AA 2024 -Graphene Nanocomposites,” Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 12519–12524.
  • [68] X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Materials&Design, vol. 94, pp. 54–60, 2016.
  • [69] G. Li and B. Xiong, “Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites,” Journal of Alloys and Compounds, vol. 697, pp. 31–36, 2017.
  • [70] H. Zhang, C. Xu, W. Xiao, K. Ameyama, and C. Ma, “Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion,” Materials Science and Engineering A, vol. 658, pp. 8–15, 2016.
  • [71] G. Li and B. Xiong, “Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites,” Journal of Alloys and Compounds, vol. 697, pp. 31–36, 2017.
  • [72] M. C. Şenel, M. Gürbüz, and E. Koç, “Fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites,” Composites Part B Engineering, vol. 154, pp. 1–9, 2018.
  • [73] M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Science: Material International, vol. 24, no. 2, pp. 101–108, 2014.
  • [74] M. C. Şenel, M. Gürbüz, and E. Koç, “Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets,” Materials Science and Technology. (United Kingdom), vol. 34, no. 16, pp. 1980–1989, 2018.
  • [75] M. Rashad, H. Lin, R. Pan, Z. Yu, F. Pan, and M. Asif, “Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets,” Progress in Natural Science: Material International, vol. 25, no. 5, pp. 460–470, 2015.
  • [76] M. Gürbüz, M. Can Şenel, and E. Koç, “The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites,” Journal of Composites Materials, vol. 52, no. 4, pp. 553–563, 2018.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Salih Korucu 0000-0002-4391-0771

Gürkan Soy 0000-0002-0308-1702

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Korucu, S., & Soy, G. (2019). Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma. Duzce University Journal of Science and Technology, 7(3), 1466-1487. https://doi.org/10.29130/dubited.536359
AMA Korucu S, Soy G. Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma. DÜBİTED. Temmuz 2019;7(3):1466-1487. doi:10.29130/dubited.536359
Chicago Korucu, Salih, ve Gürkan Soy. “Alüminyum Matrisli Kompozitlerde Tungsten Karbür Ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma”. Duzce University Journal of Science and Technology 7, sy. 3 (Temmuz 2019): 1466-87. https://doi.org/10.29130/dubited.536359.
EndNote Korucu S, Soy G (01 Temmuz 2019) Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma. Duzce University Journal of Science and Technology 7 3 1466–1487.
IEEE S. Korucu ve G. Soy, “Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma”, DÜBİTED, c. 7, sy. 3, ss. 1466–1487, 2019, doi: 10.29130/dubited.536359.
ISNAD Korucu, Salih - Soy, Gürkan. “Alüminyum Matrisli Kompozitlerde Tungsten Karbür Ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma”. Duzce University Journal of Science and Technology 7/3 (Temmuz 2019), 1466-1487. https://doi.org/10.29130/dubited.536359.
JAMA Korucu S, Soy G. Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma. DÜBİTED. 2019;7:1466–1487.
MLA Korucu, Salih ve Gürkan Soy. “Alüminyum Matrisli Kompozitlerde Tungsten Karbür Ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma”. Duzce University Journal of Science and Technology, c. 7, sy. 3, 2019, ss. 1466-87, doi:10.29130/dubited.536359.
Vancouver Korucu S, Soy G. Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma. DÜBİTED. 2019;7(3):1466-87.