Araştırma Makalesi
BibTex RIS Kaynak Göster

Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi

Yıl 2019, Cilt: 7 Sayı: 3, 2019 - 2029, 31.07.2019
https://doi.org/10.29130/dubited.554914

Öz

Kendiliğinden Birikme, yüzeylerin fonksiyonelleştilmesi için
etkili bir teknilerden biridir. Kendiliğinden biriken moleküller (Self-assembled
monolayers, SAM), iletken/yarıiletken ve yalıtkan/yarıiletken yüzeyler üzerine
oluşturulabilir ve çeşitli teknolojik uygulamalarda kullanılmaktadır. Bu
çalışmada, kendiliğinden biriken tek katman molekülleri kullanılarak Organik
Alan Etkili Transistörlerin yalıtkan/yarıiletken ara yüzeyi
fonksiyonelleştirilerek aygıt performansı arttırılması amaçlanmıştır.

Kaynakça

  • [1] M. Riordan, L. Hoddeson and C. Herring, "The invention of the transistor", Reviews of Modern Physics, vol. 71, no. 2, pp. 336-345, 1999.
  • [2] J. Bardeen and W. H. Brattain, "Three-electrode circuit element utilizing semiconductive materials", U.S., 2524034A, 1950.
  • [3] J. Bardeen and W. H. Brattain, "The transistor, a semi-conductor triode", Phys. Rev., vol. 74, no. 2, pp. 230-231, 1948.
  • [4] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x.", J. Chem. Soc. Chem. Commun., no. 16, pp. 578–580, 1977.
  • [5] F. Ebisawa, T. Kurokawa and S. Nara, "Electrical properties of polyacetylene/polysiloxane interface", J. Appl. Phys., vol. 54, no. 6, pp. 3255-3259, 1983.
  • [6] A. Tsumura, H. Koezuka and T. Ando, "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film", Appl. Phys. Lett., vol. 49, no. 18, pp. 1210-1212, 1986.
  • [7] Sciencedirect, (19 Ekim 2018). [Online]. Erişim: www.sciencedirect.com
  • [8] H. Sirringhaus, "25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon", Adv. Mater., vol. 26, pp. 1319-1335, 2014.
  • [9] I. Kymissis, C.D. Dimitrakopoulos and S. Purushothaman, "High performance bottom electrode organic thin-film transistors", IEEE Trans. Electron Device, vol. 48, no. 6, pp. 1060-1064, 2001.
  • [10] H. Klauk, Organic Electronics, Materials, Manufacturing and Applications, 2nd ed., Weinheim, Germany: Wiley-VCH, 2006, ch. 1, pp. 1-32.
  • [11] H. Klauk, "Organic thin-film transistors", Chem. Soc. Rev., vol. 39, no. 7, pp. 2643-2666, 2010.
  • [12] W. L. A. Brooks and B. S. Sumerlin, "Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine", Chem. Rev., vol. 116, no. 3, pp. 1375-1397, 2016.
  • [13] K. Lacina, P. Skládal and T. D. James, "Boronic acids for sensing and other applications - a mini-review of papers published in 2013", Chem. Cent. J., vol. 8, no.1, pp. 60, 2014.
  • [14] T. Yılmaz Alıç, "The effect of phenylboronic acid-based self-assembled monolayers on the performance of organic field-effect transistors (OFETs)", Turk. J. Phys., vol. 43, pp. 207 – 212, 2019.
  • [15] D. Akın Kara, K. Kara, G. Oylumluoglu, M. Z. Yigit, M. Can, J. J. Kim, E. K. Burnett, D. L. Gonzalez Arellano, S. Buyukcelebi, F. Ozel, O. Usluer, A. L. Briseno and M. Kus, "Enhanced Device Efficiency and Long-Term Stability via Boronic Acid-Based Self-Assembled Monolayer Modification of Indium Tin Oxide in a Planar Perovskite Solar Cell", ACS App. Mat. & Int., vol. 10, no. 35, pp. 30000-30007, 2018.
  • [16] J.-I. Anzai, "Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives", Mat. Sci. and Eng. C., vol. 67 , pp. 737-746, 2016.
  • [17] T. Minami, T. Minamiki, Y. Hashima, D. Yokoyama, T. Sekine, K. Fukuda, D. Kumaki and S. Tokito, "An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water", Chem. Comm., vol. 50, no. 98, pp. 15613-15615, 2014.
  • [18] Y. Egawa, T. Seki, S. Takahashi and J .-i. Anzai, "Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives", Mat. Sci. and Eng. C., vol. 31, no. 7, pp. 1257-1264, 2011.
  • [19] J. W. Ward, "Enhancing The Electrical Performance Of Organic Field-Effect Transistors Through Interface Engineering, Physics", PhD Thesis, Wake Forest University, North Carolina, USA, 2015.
  • [20] G. Horowitz, "Interfaces in organic field-effect transistors", Adv. Polym. Sci., vol. 223, pp. 113-153, 2010.
  • [21] N. K. Za'aba, J. J. Morrison and D. M. Taylor, "Effect of relative humidity and temperature on the stability of DNTT transistors: A density of states investigation", Org. Elec., vol. 45, pp. 174-181, 2017.
  • [22] U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J. B. Nimoth and H. Klauk, "Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability", Org. Elec., vol. 12, no. 8, pp. 1370-1375, 2011.
  • [23] A. Kyndiah, A. Ablat, S. Guyot-Reeb, T. Schultz, F. Zu, N. Koch, P. Amsalem, S. Chiodini, T. Yilmaz Alic, Y. Topal, M. Kus, L. Hirsch, S. Fasquel and M. Abbas, "A Multifunctional Interlayer for Solution Processed High Performance Indium Oxide Transistors", Sci. Rep., vol. 8, no.1, pp. 10946, 2018.
  • [24] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid and G. Schitter, "Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator", J. of App. Phys., vol. 96, no. 11, pp. 6431-6438, 2004.
  • [25] M. Aghamohammadi, R. Rödel, U. Zschieschang, C. Ocal, H. Boschker, R. T. Weitz, E. Barrena and H. Klauk, "Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects", ACS App. Mat. & Int., vol. 7, no. 41, pp. 22775-22785, 2015.
  • [26] K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa and T. Kamata, "Threshold voltage stability of organic field-effect transistors for various chemical species in the insulator surface", App. Phys. Lett., vol. 91, no. 19, pp. 192112, 2007.
  • [27] M. H. Yoon, C. Kim, A. Facchetti and T. J. Marks, "Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors", J. Am. Chem. Soc., vol. 128, pp. 12851–12869, 2006.
  • [28] L. Jong-Son, N. Kee-Soo and L. Choochon, "Determination of the Interface Trap Density in Metal Oxide Semiconductor Field-Effect Transistor through Subthreshold Slope Measurement", Japanese J. of App. Phys., vol. 32, no. 10R, pp. 4393, 1993.
  • [29] R. García and R. Pérez, "Dynamic atomic force microscopy methods", Sur. Sci. Rep., vol. 47, no.6-8, pp. 197-201, 2002.
  • [30] E. P. Plueddemann, Silane Coupling Agents, 2nd ed., New York, US: Springer, 1991, ch. 4, pp. 79-114.

The Effect of the Insulator/Semiconductor Interface on Transistor Performance with Self-Assembly Monolayer Technique

Yıl 2019, Cilt: 7 Sayı: 3, 2019 - 2029, 31.07.2019
https://doi.org/10.29130/dubited.554914

Öz

Self-assembly is one of the most effective technıques for surface
functionalization. Self-assembled monolayers (SAMs) can be formed on conductor/semiconductor
and dielectric/semiconductor surfaces, and have been used in a variety of
technological applications. In this work aims to increased performance of
Organic Field Effect Transistors using self-assembled monolayers molecules on
dielectric/semiconductor surface.

Kaynakça

  • [1] M. Riordan, L. Hoddeson and C. Herring, "The invention of the transistor", Reviews of Modern Physics, vol. 71, no. 2, pp. 336-345, 1999.
  • [2] J. Bardeen and W. H. Brattain, "Three-electrode circuit element utilizing semiconductive materials", U.S., 2524034A, 1950.
  • [3] J. Bardeen and W. H. Brattain, "The transistor, a semi-conductor triode", Phys. Rev., vol. 74, no. 2, pp. 230-231, 1948.
  • [4] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x.", J. Chem. Soc. Chem. Commun., no. 16, pp. 578–580, 1977.
  • [5] F. Ebisawa, T. Kurokawa and S. Nara, "Electrical properties of polyacetylene/polysiloxane interface", J. Appl. Phys., vol. 54, no. 6, pp. 3255-3259, 1983.
  • [6] A. Tsumura, H. Koezuka and T. Ando, "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film", Appl. Phys. Lett., vol. 49, no. 18, pp. 1210-1212, 1986.
  • [7] Sciencedirect, (19 Ekim 2018). [Online]. Erişim: www.sciencedirect.com
  • [8] H. Sirringhaus, "25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon", Adv. Mater., vol. 26, pp. 1319-1335, 2014.
  • [9] I. Kymissis, C.D. Dimitrakopoulos and S. Purushothaman, "High performance bottom electrode organic thin-film transistors", IEEE Trans. Electron Device, vol. 48, no. 6, pp. 1060-1064, 2001.
  • [10] H. Klauk, Organic Electronics, Materials, Manufacturing and Applications, 2nd ed., Weinheim, Germany: Wiley-VCH, 2006, ch. 1, pp. 1-32.
  • [11] H. Klauk, "Organic thin-film transistors", Chem. Soc. Rev., vol. 39, no. 7, pp. 2643-2666, 2010.
  • [12] W. L. A. Brooks and B. S. Sumerlin, "Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine", Chem. Rev., vol. 116, no. 3, pp. 1375-1397, 2016.
  • [13] K. Lacina, P. Skládal and T. D. James, "Boronic acids for sensing and other applications - a mini-review of papers published in 2013", Chem. Cent. J., vol. 8, no.1, pp. 60, 2014.
  • [14] T. Yılmaz Alıç, "The effect of phenylboronic acid-based self-assembled monolayers on the performance of organic field-effect transistors (OFETs)", Turk. J. Phys., vol. 43, pp. 207 – 212, 2019.
  • [15] D. Akın Kara, K. Kara, G. Oylumluoglu, M. Z. Yigit, M. Can, J. J. Kim, E. K. Burnett, D. L. Gonzalez Arellano, S. Buyukcelebi, F. Ozel, O. Usluer, A. L. Briseno and M. Kus, "Enhanced Device Efficiency and Long-Term Stability via Boronic Acid-Based Self-Assembled Monolayer Modification of Indium Tin Oxide in a Planar Perovskite Solar Cell", ACS App. Mat. & Int., vol. 10, no. 35, pp. 30000-30007, 2018.
  • [16] J.-I. Anzai, "Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives", Mat. Sci. and Eng. C., vol. 67 , pp. 737-746, 2016.
  • [17] T. Minami, T. Minamiki, Y. Hashima, D. Yokoyama, T. Sekine, K. Fukuda, D. Kumaki and S. Tokito, "An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water", Chem. Comm., vol. 50, no. 98, pp. 15613-15615, 2014.
  • [18] Y. Egawa, T. Seki, S. Takahashi and J .-i. Anzai, "Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives", Mat. Sci. and Eng. C., vol. 31, no. 7, pp. 1257-1264, 2011.
  • [19] J. W. Ward, "Enhancing The Electrical Performance Of Organic Field-Effect Transistors Through Interface Engineering, Physics", PhD Thesis, Wake Forest University, North Carolina, USA, 2015.
  • [20] G. Horowitz, "Interfaces in organic field-effect transistors", Adv. Polym. Sci., vol. 223, pp. 113-153, 2010.
  • [21] N. K. Za'aba, J. J. Morrison and D. M. Taylor, "Effect of relative humidity and temperature on the stability of DNTT transistors: A density of states investigation", Org. Elec., vol. 45, pp. 174-181, 2017.
  • [22] U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J. B. Nimoth and H. Klauk, "Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability", Org. Elec., vol. 12, no. 8, pp. 1370-1375, 2011.
  • [23] A. Kyndiah, A. Ablat, S. Guyot-Reeb, T. Schultz, F. Zu, N. Koch, P. Amsalem, S. Chiodini, T. Yilmaz Alic, Y. Topal, M. Kus, L. Hirsch, S. Fasquel and M. Abbas, "A Multifunctional Interlayer for Solution Processed High Performance Indium Oxide Transistors", Sci. Rep., vol. 8, no.1, pp. 10946, 2018.
  • [24] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid and G. Schitter, "Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator", J. of App. Phys., vol. 96, no. 11, pp. 6431-6438, 2004.
  • [25] M. Aghamohammadi, R. Rödel, U. Zschieschang, C. Ocal, H. Boschker, R. T. Weitz, E. Barrena and H. Klauk, "Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects", ACS App. Mat. & Int., vol. 7, no. 41, pp. 22775-22785, 2015.
  • [26] K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa and T. Kamata, "Threshold voltage stability of organic field-effect transistors for various chemical species in the insulator surface", App. Phys. Lett., vol. 91, no. 19, pp. 192112, 2007.
  • [27] M. H. Yoon, C. Kim, A. Facchetti and T. J. Marks, "Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors", J. Am. Chem. Soc., vol. 128, pp. 12851–12869, 2006.
  • [28] L. Jong-Son, N. Kee-Soo and L. Choochon, "Determination of the Interface Trap Density in Metal Oxide Semiconductor Field-Effect Transistor through Subthreshold Slope Measurement", Japanese J. of App. Phys., vol. 32, no. 10R, pp. 4393, 1993.
  • [29] R. García and R. Pérez, "Dynamic atomic force microscopy methods", Sur. Sci. Rep., vol. 47, no.6-8, pp. 197-201, 2002.
  • [30] E. P. Plueddemann, Silane Coupling Agents, 2nd ed., New York, US: Springer, 1991, ch. 4, pp. 79-114.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuğbahan Yılmaz Alıç 0000-0001-8633-5845

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Yılmaz Alıç, T. (2019). Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi. Duzce University Journal of Science and Technology, 7(3), 2019-2029. https://doi.org/10.29130/dubited.554914
AMA Yılmaz Alıç T. Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi. DÜBİTED. Temmuz 2019;7(3):2019-2029. doi:10.29130/dubited.554914
Chicago Yılmaz Alıç, Tuğbahan. “Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek Katman Tekniği Ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi”. Duzce University Journal of Science and Technology 7, sy. 3 (Temmuz 2019): 2019-29. https://doi.org/10.29130/dubited.554914.
EndNote Yılmaz Alıç T (01 Temmuz 2019) Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi. Duzce University Journal of Science and Technology 7 3 2019–2029.
IEEE T. Yılmaz Alıç, “Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi”, DÜBİTED, c. 7, sy. 3, ss. 2019–2029, 2019, doi: 10.29130/dubited.554914.
ISNAD Yılmaz Alıç, Tuğbahan. “Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek Katman Tekniği Ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi”. Duzce University Journal of Science and Technology 7/3 (Temmuz 2019), 2019-2029. https://doi.org/10.29130/dubited.554914.
JAMA Yılmaz Alıç T. Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi. DÜBİTED. 2019;7:2019–2029.
MLA Yılmaz Alıç, Tuğbahan. “Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek Katman Tekniği Ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi”. Duzce University Journal of Science and Technology, c. 7, sy. 3, 2019, ss. 2019-2, doi:10.29130/dubited.554914.
Vancouver Yılmaz Alıç T. Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi. DÜBİTED. 2019;7(3):2019-2.