HMGB1’in Kanser ve Tedavisiyle İlişkisi
Yıl 2019,
Cilt: 7 Sayı: 3, 1976 - 1984, 31.07.2019
Eylem Taşkın Güven
,
Celal Güven
,
Salih Tunç Kaya
,
Yusuf Sevgiler
Öz
Yüksek mobilite grup kutusu 1 (HMGB1)
histon olmayan DNA proteini olup, kısaca DAMP olarak ifade edilen
(Damage-associated molecular pattern) tehlike sinyali veya alarmı olarak görev
yapar. Hasarlanmış veya kanserli hücrelerden salınan HMGB1, gelişmiş glikasyon
son ürünleri için reseptör (RAGE) ve Toll benzeri reseptörlerine (TLRs)
bağlanarak mitojenle aktive olan kinaz (MAPK)’ları aktive ederek hücre içi
etkilerini oluşturur. HMGB1 kanser ilaçlarına karşı gelişen dirençte önemli rol
oynar. Aynı zamanda, yumuşak doku kanserlerine karşı kullanılan ilaçlardan biri
olan adriyamisinin (ADR) neden olduğu kalp yetmezliğinin gelişiminde de
önemli rol oynağına dair kanıtlar mevcuttur. Dolayısıyla HMGB1 kanser
tedavisinde ilaçlara karşı gelişen direncin ve/veya ilacın toksik etkisine
karşı iyi bir terapötik ajan adayıdır. Bu derlemenin amacı, HMGB1 ile kanser ve
tedavisinde kullanılan bir ilaç olan ADR arasındaki ilişkiyi açıklamaktır.
Kaynakça
- [1] K. Amornsupak, T. Insawang, P. Thuwajit, P. O-Charoenrat, S. A. Eccles and C. Thuwajit, “Cancer-associated fibroblasts induce high mobility group box 1 and contribute to resistance to doxorubicin in breast cancer cells,” BMC Cancer, vol. 14, no. pp. 955, 2014.
- [2] Y. Luo, Y. Chihara, K. Fujimoto, T. Sasahira, M. Kuwada, R. Fujiwara, K. Fujii, H. Ohmori and H. Kuniyasu, “High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy,” Eur J Cancer, vol. 49, no. 3, pp. 741-751, 2013.
- [3] D. Du, J. Yan, J. Ren, H. Lv, Y. Li, S. Xu, Y. Wang, S. Ma, J. Qu, W. Tang, Z. Hu and S. Yu, “Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo,” J Med Chem, vol. 56, no. 1, pp. 97-108, 2013.
- [4] A. Tripathi, K. Shrinet and A. Kumar, “HMGB1 protein as a novel target for cancer,” Toxicol Rep, vol. 6, no. pp. 253-261, 2019.
- [5] R. Kang, R. Chen, Q. Zhang, W. Hou, S. Wu, L. Cao, J. Huang, Y. Yu, X. G. Fan, Z. Yan, X. Sun, H. Wang, Q. Wang, A. Tsung, T. R. Billiar, H. J. Zeh, 3rd, M. T. Lotze and D. Tang, “HMGB1 in health and disease,” Mol Aspects Med, vol. 40, no. pp. 1-116, 2014.
- [6] L. Wu and L. Yang, “The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications,” Oncol Lett, vol. 15, no. 5, pp. 6799-6805, 2018.
- [7] Y. Yao, X. Xu, G. Zhang, Y. Zhang, W. Qian and T. Rui, “Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway,” Basic Res Cardiol, vol. 107, no. 3, pp. 267, 2012.
- [8] K. L. Simpson, C. Cawthorne, C. Zhou, C. L. Hodgkinson, M. J. Walker, F. Trapani, M. Kadirvel, G. Brown, M. J. Dawson, M. MacFarlane, K. J. Williams, A. D. Whetton and C. Dive, “A caspase-3 'death-switch' in colorectal cancer cells for induced and synchronous tumor apoptosis in vitro and in vivo facilitates the development of minimally invasive cell death biomarkers,” Cell Death Dis, vol. 4, no. pp. e613, 2013.
- [9] Y. G. Ma, X. W. Zhang, H. Y. Bao, S. S. Yu, Z. W. Hu and W. Sun, “[Blocking extracellular HMGB1 activity protects against doxorubicin induced cardiac injury in mice],” Yao Xue Xue Bao, vol. 47, no. 11, pp. 1489-1495, 2012.
- [10] T. Narumi, T. Shishido, Y. Otaki, S. Kadowaki, Y. Honda, A. Funayama, S. Honda, H. Hasegawa, D. Kinoshita, M. Yokoyama, S. Nishiyama, H. Takahashi, T. Arimoto, T. Miyamoto, T. Watanabe, A. Tanaka, C. H. Woo, J. Abe, Y. Takeishi and I. Kubota, “High-mobility group box 1-mediated heat shock protein beta 1 expression attenuates mitochondrial dysfunction and apoptosis,” J Mol Cell Cardiol, vol. 82, no. pp. 1-12, 2015.
- [11] K. Sturgeon, G. Muthukumaran, D. Ding, A. Bajulaiye, V. Ferrari and J. R. Libonati, “Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area,” Physiol Rep, vol. 3, no. 5, pp. 2015.
- [12] A. Kondratskyi, K. Kondratska, R. Skryma and N. Prevarskaya, “Ion channels in the regulation of apoptosis,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1848, no. 10, Part B, pp. 2532-2546, 2015.
- [13] A. Meyer, N. Eberle, J. Bullerdiek, I. Nolte and D. Simon, “High-mobility group B1 proteins in canine lymphoma: prognostic value of initial and sequential serum levels in treatment outcome following combination chemotherapy,” Vet Comp Oncol, vol. 8, no. 2, pp. 127-137, 2010.
- [14] N. Kawahara, T. Tanaka, A. Yokomizo, H. Nanri, M. Ono, M. Wada, K. Kohno, K. Takenaka, K. Sugimachi and M. Kuwano, “Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin,” Cancer Res, vol. 56, no. 23, pp. 5330-5333, 1996.
- [15] F. Lu, J. Zhang, M. Ji, P. Li, Y. Du, H. Wang, S. Zang, D. Ma, X. Sun and C. Ji, “miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1,” Int J Oncol, vol. 45, no. 1, pp. 383-392, 2014.
- [16] D. Garcia and R. J. Shaw, “AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance,” Mol Cell, vol. 66, no. 6, pp. 789-800, 2017.
- [17] K. Gao, Y. Chi, W. Sun, M. Takeda and J. Yao, “5'-AMP-activated protein kinase attenuates adriamycin-induced oxidative podocyte injury through thioredoxin-mediated suppression of the apoptosis signal-regulating kinase 1-P38 signaling pathway,” Mol Pharmacol, vol. 85, no. 3, pp. 460-471, 2014.
- [18] N. Dursun, E. Taskin, M. B. Yerer Aycan and L. Sahin, “Selenium-mediated cardioprotection against adriamycin-induced mitochondrial damage,” Drug Chem Toxicol, vol. 34, no. 2, pp. 199-207, 2011.
- [19] C. Guven, E. Taskin and H. Akcakaya, “Melatonin Prevents Mitochondrial Damage Induced by Doxorubicin in Mouse Fibroblasts Through Ampk-Ppar Gamma-Dependent Mechanisms,” Med Sci Monit, vol. 22, no. pp. 438-446, 2016.
- [20] E. Taskin and N. Dursun, “The protection of selenium on adriamycin-induced mitochondrial damage in rat,” Biol Trace Elem Res, vol. 147, no. 1-3, pp. 165-171, 2012.
- [21] E. Taskin and N. Dursun, “Recovery of adriamycin induced mitochondrial dysfunction in liver by selenium,” Cytotechnology, vol. 67, no. 6, pp. 977-986, 2015.
- [22] E. Taskin, E. K. Kindap, K. Ozdogan, M. B. Aycan and N. Dursun, “Acute adriamycin-induced cardiotoxicity is exacerbated by angiotension II,” Cytotechnology, vol. 68, no. 1, pp. 33-43, 2016.
- [23] E. Taskin, K. Ozdogan, E. Kunduz Kindap and N. Dursun, “The restoration of kidney mitochondria function by inhibition of angiotensin-II production in rats with acute adriamycin-induced nephrotoxicity,” Ren Fail, vol. 36, no. 4, pp. 606-612, 2014.
- [24] H. Yapislar, E. Taskin, S. Ozdas, D. Akin and E. Sonmez, “Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite,” Biol Trace Elem Res, vol. no. pp. 2015.
- [25] Y. Zhang, G. Duan and S. Feng, “MicroRNA-301a modulates doxorubicin resistance in osteosarcoma cells by targeting AMP-activated protein kinase alpha 1,” Biochem Biophys Res Commun, vol. 459, no. 3, pp. 367-373, 2015.
- [26] S. Gratia, L. Kay, L. Potenza, A. Seffouh, V. Novel-Chate, C. Schnebelen, P. Sestili, U. Schlattner and M. Tokarska-Schlattner, “Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress,” Cardiovasc Res, vol. 95, no. 3, pp. 290-299, 2012.
- [27] X. Wang, X. L. Wang, H. L. Chen, D. Wu, J. X. Chen, X. X. Wang, R. L. Li, J. H. He, L. Mo, X. Cen, Y. Q. Wei and W. Jiang, “Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK,” Biochem Pharmacol, vol. 88, no. 3, pp. 334-350, 2014.
- [28] D. N. Dhanasekaran and E. P. Reddy, “JNK signaling in apoptosis,” Oncogene, vol. 27, no. 48, pp. 6245-6251, 2008.
- [29] P. Luo, Y. Zhu, M. Chen, H. Yan, B. Yang, X. Yang and Q. He, “HMGB1 contributes to adriamycin-induced cardiotoxicity via up-regulating autophagy,” Toxicol Lett, vol. 292, no. pp. 115-122, 2018.
- [30] H. Xu, Y. Yao, Z. Su, Y. Yang, R. Kao, C. M. Martin and T. Rui, “Endogenous HMGB1 contributes to ischemia-reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-α/JNK,” Am J Physiol Heart Circ Physiol, vol. 300, no. 3, pp. H913-921, 2011.
The Relationship between HMGB1, Cancer and Its Treatment
Yıl 2019,
Cilt: 7 Sayı: 3, 1976 - 1984, 31.07.2019
Eylem Taşkın Güven
,
Celal Güven
,
Salih Tunç Kaya
,
Yusuf Sevgiler
Öz
High mobility group box-1 (HMGB1), one of nonhiston protein, plays role
as danger signals, and alarming shortly named as DAMP. HMGB1 released from
damaged and cancer cells triggers mitogen activated kinases (MAPK) to act
intracellular effect by binding the receptor for advanced glycation end
products (RAGE) and toll like receptor (TLR). HMGB1 is essential to develop
resistant against anticancer drugs. In addition, there is evidence that HMGB1
participate in developing to heart failure-induced by Adriamycin, one of
anticancer drug against for solid cancer. Therefore, HMGB1 could be a good
candidate for drug-resistant against to cancer and/or anticancer drug toxicity.
The aim of the present review is to explain the relationship between HMBG1, cancer
and Adriamycin used for cancer’s treatment.
Kaynakça
- [1] K. Amornsupak, T. Insawang, P. Thuwajit, P. O-Charoenrat, S. A. Eccles and C. Thuwajit, “Cancer-associated fibroblasts induce high mobility group box 1 and contribute to resistance to doxorubicin in breast cancer cells,” BMC Cancer, vol. 14, no. pp. 955, 2014.
- [2] Y. Luo, Y. Chihara, K. Fujimoto, T. Sasahira, M. Kuwada, R. Fujiwara, K. Fujii, H. Ohmori and H. Kuniyasu, “High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy,” Eur J Cancer, vol. 49, no. 3, pp. 741-751, 2013.
- [3] D. Du, J. Yan, J. Ren, H. Lv, Y. Li, S. Xu, Y. Wang, S. Ma, J. Qu, W. Tang, Z. Hu and S. Yu, “Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo,” J Med Chem, vol. 56, no. 1, pp. 97-108, 2013.
- [4] A. Tripathi, K. Shrinet and A. Kumar, “HMGB1 protein as a novel target for cancer,” Toxicol Rep, vol. 6, no. pp. 253-261, 2019.
- [5] R. Kang, R. Chen, Q. Zhang, W. Hou, S. Wu, L. Cao, J. Huang, Y. Yu, X. G. Fan, Z. Yan, X. Sun, H. Wang, Q. Wang, A. Tsung, T. R. Billiar, H. J. Zeh, 3rd, M. T. Lotze and D. Tang, “HMGB1 in health and disease,” Mol Aspects Med, vol. 40, no. pp. 1-116, 2014.
- [6] L. Wu and L. Yang, “The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications,” Oncol Lett, vol. 15, no. 5, pp. 6799-6805, 2018.
- [7] Y. Yao, X. Xu, G. Zhang, Y. Zhang, W. Qian and T. Rui, “Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway,” Basic Res Cardiol, vol. 107, no. 3, pp. 267, 2012.
- [8] K. L. Simpson, C. Cawthorne, C. Zhou, C. L. Hodgkinson, M. J. Walker, F. Trapani, M. Kadirvel, G. Brown, M. J. Dawson, M. MacFarlane, K. J. Williams, A. D. Whetton and C. Dive, “A caspase-3 'death-switch' in colorectal cancer cells for induced and synchronous tumor apoptosis in vitro and in vivo facilitates the development of minimally invasive cell death biomarkers,” Cell Death Dis, vol. 4, no. pp. e613, 2013.
- [9] Y. G. Ma, X. W. Zhang, H. Y. Bao, S. S. Yu, Z. W. Hu and W. Sun, “[Blocking extracellular HMGB1 activity protects against doxorubicin induced cardiac injury in mice],” Yao Xue Xue Bao, vol. 47, no. 11, pp. 1489-1495, 2012.
- [10] T. Narumi, T. Shishido, Y. Otaki, S. Kadowaki, Y. Honda, A. Funayama, S. Honda, H. Hasegawa, D. Kinoshita, M. Yokoyama, S. Nishiyama, H. Takahashi, T. Arimoto, T. Miyamoto, T. Watanabe, A. Tanaka, C. H. Woo, J. Abe, Y. Takeishi and I. Kubota, “High-mobility group box 1-mediated heat shock protein beta 1 expression attenuates mitochondrial dysfunction and apoptosis,” J Mol Cell Cardiol, vol. 82, no. pp. 1-12, 2015.
- [11] K. Sturgeon, G. Muthukumaran, D. Ding, A. Bajulaiye, V. Ferrari and J. R. Libonati, “Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area,” Physiol Rep, vol. 3, no. 5, pp. 2015.
- [12] A. Kondratskyi, K. Kondratska, R. Skryma and N. Prevarskaya, “Ion channels in the regulation of apoptosis,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1848, no. 10, Part B, pp. 2532-2546, 2015.
- [13] A. Meyer, N. Eberle, J. Bullerdiek, I. Nolte and D. Simon, “High-mobility group B1 proteins in canine lymphoma: prognostic value of initial and sequential serum levels in treatment outcome following combination chemotherapy,” Vet Comp Oncol, vol. 8, no. 2, pp. 127-137, 2010.
- [14] N. Kawahara, T. Tanaka, A. Yokomizo, H. Nanri, M. Ono, M. Wada, K. Kohno, K. Takenaka, K. Sugimachi and M. Kuwano, “Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin,” Cancer Res, vol. 56, no. 23, pp. 5330-5333, 1996.
- [15] F. Lu, J. Zhang, M. Ji, P. Li, Y. Du, H. Wang, S. Zang, D. Ma, X. Sun and C. Ji, “miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1,” Int J Oncol, vol. 45, no. 1, pp. 383-392, 2014.
- [16] D. Garcia and R. J. Shaw, “AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance,” Mol Cell, vol. 66, no. 6, pp. 789-800, 2017.
- [17] K. Gao, Y. Chi, W. Sun, M. Takeda and J. Yao, “5'-AMP-activated protein kinase attenuates adriamycin-induced oxidative podocyte injury through thioredoxin-mediated suppression of the apoptosis signal-regulating kinase 1-P38 signaling pathway,” Mol Pharmacol, vol. 85, no. 3, pp. 460-471, 2014.
- [18] N. Dursun, E. Taskin, M. B. Yerer Aycan and L. Sahin, “Selenium-mediated cardioprotection against adriamycin-induced mitochondrial damage,” Drug Chem Toxicol, vol. 34, no. 2, pp. 199-207, 2011.
- [19] C. Guven, E. Taskin and H. Akcakaya, “Melatonin Prevents Mitochondrial Damage Induced by Doxorubicin in Mouse Fibroblasts Through Ampk-Ppar Gamma-Dependent Mechanisms,” Med Sci Monit, vol. 22, no. pp. 438-446, 2016.
- [20] E. Taskin and N. Dursun, “The protection of selenium on adriamycin-induced mitochondrial damage in rat,” Biol Trace Elem Res, vol. 147, no. 1-3, pp. 165-171, 2012.
- [21] E. Taskin and N. Dursun, “Recovery of adriamycin induced mitochondrial dysfunction in liver by selenium,” Cytotechnology, vol. 67, no. 6, pp. 977-986, 2015.
- [22] E. Taskin, E. K. Kindap, K. Ozdogan, M. B. Aycan and N. Dursun, “Acute adriamycin-induced cardiotoxicity is exacerbated by angiotension II,” Cytotechnology, vol. 68, no. 1, pp. 33-43, 2016.
- [23] E. Taskin, K. Ozdogan, E. Kunduz Kindap and N. Dursun, “The restoration of kidney mitochondria function by inhibition of angiotensin-II production in rats with acute adriamycin-induced nephrotoxicity,” Ren Fail, vol. 36, no. 4, pp. 606-612, 2014.
- [24] H. Yapislar, E. Taskin, S. Ozdas, D. Akin and E. Sonmez, “Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite,” Biol Trace Elem Res, vol. no. pp. 2015.
- [25] Y. Zhang, G. Duan and S. Feng, “MicroRNA-301a modulates doxorubicin resistance in osteosarcoma cells by targeting AMP-activated protein kinase alpha 1,” Biochem Biophys Res Commun, vol. 459, no. 3, pp. 367-373, 2015.
- [26] S. Gratia, L. Kay, L. Potenza, A. Seffouh, V. Novel-Chate, C. Schnebelen, P. Sestili, U. Schlattner and M. Tokarska-Schlattner, “Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress,” Cardiovasc Res, vol. 95, no. 3, pp. 290-299, 2012.
- [27] X. Wang, X. L. Wang, H. L. Chen, D. Wu, J. X. Chen, X. X. Wang, R. L. Li, J. H. He, L. Mo, X. Cen, Y. Q. Wei and W. Jiang, “Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK,” Biochem Pharmacol, vol. 88, no. 3, pp. 334-350, 2014.
- [28] D. N. Dhanasekaran and E. P. Reddy, “JNK signaling in apoptosis,” Oncogene, vol. 27, no. 48, pp. 6245-6251, 2008.
- [29] P. Luo, Y. Zhu, M. Chen, H. Yan, B. Yang, X. Yang and Q. He, “HMGB1 contributes to adriamycin-induced cardiotoxicity via up-regulating autophagy,” Toxicol Lett, vol. 292, no. pp. 115-122, 2018.
- [30] H. Xu, Y. Yao, Z. Su, Y. Yang, R. Kao, C. M. Martin and T. Rui, “Endogenous HMGB1 contributes to ischemia-reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-α/JNK,” Am J Physiol Heart Circ Physiol, vol. 300, no. 3, pp. H913-921, 2011.