Yüzeyleri Karbonlaştırılmış Odunların Çürüklüğe Karşı Direnci
Yıl 2020,
Cilt: 8 Sayı: 1, 746 - 753, 31.01.2020
Çağlar Akçay
,
İpek Karal Saygin
Cihat Taşçıoğlu
Öz
Bu çalışmada pürmüz ile
yakma metodu uygulanarak yüzeyleri karbonlaştırılan sarıçam ve kayın odun
örneklerinin çürüklük mantarlarına karşı dayanımı araştırılmıştır. Bu kapsamda
tek ve beş yüzeyi karbonlaştırılan örnekler ağaç malzemede esmer ve beyaz
çürüklük meydana getiren Coniophora puteana ve Pleurotus ostreatus
mantarlarına karşı 12 haftalık süreyle maruz bırakılmıştır. Çalışma sonucunda
esmer çürüklük mantarına maruz bırakılan sarıçam odun örneklerinde tek ve beş
yüzeyi karbonlaştırılan örneklerde, kayın odununda ise beş yüzeyi
karbonlaştırılan örneklerin ağırlık kayıplarında azalma olmuştur. Her iki ağaç türünün kontrol örnekleri ile
aralarında istatistiki olarak da anlamlı fark bulunmuştur. Beyaz çürüklük
mantarına maruz bırakılan örneklerin her iki ağaç türü içinde kontrol örnekleri
arasında ağırlık kayıpları bakımından istatistiki olarak fark bulunmamıştır. Bu
sonuçlar karbonlaştırılan odun örneklerinin esmer çürüklüğün (C. puteana)
risk olduğu yerlerde kullanılabileceğini ortaya koymuştur.
Kaynakça
- [1] FPL report, “Charcoal production, marketing, and use,” Forest Product Laboratory, USA, Rep. 2213, 1961.
- [2] S. Huş, Wood adhesives, Istanbul, Turkey, Istanbul University Forest Faculty Publications, 1977.
- [3] S.N. Kartal, and C.A. Clausen, “Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood,” International Biodeterioration & Biodegradation, vol. 47, no. 3, pp. 183-191, 2001.
- [4] C. Tascioglu, M. Tufan, M. Yalcin, and S. Sen, “Determination of biological performance, dimensional stability, mechanical and thermal properties of wood–plastic composites produced from recycled chromated copper arsenate-treated wood,” Journal of Thermoplastic Composite Materials. vol. 29, no.11, pp. 1461-1479, 2016.
- [5] C. Clausen, “Improving the two-step remediation process for CCA-treated wood: Part I. Evaluating oxalic acid extraction,” Waste Management, vol. 24, no. 4, pp. 401-405, 2004.
- [6] S. Sen, H. Hafizoglu, and M. Digrak, “Investigation of wood preservative activities of some plant extracts as fungicide,” KSU Journal of Science and Engineering, vol. 5, no. 1, pp. 99-110, 2002.
- [7] E.D. Suttie “Novel wood preservatives,” Chemistry & Industry, vol. 18, pp. 720-724, 1997.
- [8] P. Viitaniemi, S. Jämsä, P. Ek, and H. Viitanen, “Method for improving biodegradation resistance and dimensional stability of cellulosic products,” U.S. Patent WO/1994/027102, 24 November, 1994.
- [9] G.T. Pott, D. Hueting, and J. Deursen, “A commercially attractive method to reduce moisture sensitivity of lignocellulose fibres, without the use of chemicals,” Third International Symposium Bioresource Hemp 2000 and Other Fibre Crops, Wolfsburg, Germany, 2000.
- [10] Test methods for determining the effectiveness of wood preservatives and their performance requirements. Japan Indusrtrial Standarts K 1571, Tokyo, Japan, 2004.
- [11] R. J. Gosselink, A. M. Krosse, J. van der Putten, J. van der Kolk, B. de Klerk-Engels, and J. E. van Dam, “Wood preservation by low-temperature carbonisation,” Industrial Crops and Products, Vol. 19, pp. 3–12. 2004.
- [12] M. Yalçın, H. H. Doğan, and Ç. Akçay, “Identification of wood‐decay fungi and assessment of damage in log depots of Western Black Sea Region (Turkey),” Forest pathology. 2019.
- [13] A.P. Erten, Ormancılık araştırma enstitüsü yayınları, muhtelif yayınlar serisi no: 36, Ankara. 1980.
- [14] A. Berkel, Y. Bozkurt, ve Y. Göker, “Kayında ardaklanma, meşede kahverengi şeritlilik ile her iki ağaç cinsinde çatlamanın önlenmesi üzerine bir deneme,” İstanbul Üniversitesi Orman Fakültesi Dergisi, c. 28, s. 1. ss. 16-16, 1978.
Decay Resistance of Carbonized Wood Surfaces
Yıl 2020,
Cilt: 8 Sayı: 1, 746 - 753, 31.01.2020
Çağlar Akçay
,
İpek Karal Saygin
Cihat Taşçıoğlu
Öz
In this study, decay resistance of carbonized wood surfaces by combustion method was examined. In this context either single or five geometrical surfaces of Scots pine and beech wood specimens were carbonized and exposed to Coniophora puteana (brown rot) and Pleurotus ostreatus (white rot) decay fungi for 12 weeks. According to the results single or five surface carbonized Scots pine specimen showed reduced weight loses when compared to un-carbonized controls. Beech wood specimens, on the other hand, resulted significantly low weight losses only for five surface carbonized specimens. A statically significant difference was found between the control samples of both wood species. Since surface carbonization did not introduce any differences among the treatment types of white rot fungi for both wood species, this method could be useful against brown rot fungi (C. puteana) risk.
Kaynakça
- [1] FPL report, “Charcoal production, marketing, and use,” Forest Product Laboratory, USA, Rep. 2213, 1961.
- [2] S. Huş, Wood adhesives, Istanbul, Turkey, Istanbul University Forest Faculty Publications, 1977.
- [3] S.N. Kartal, and C.A. Clausen, “Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood,” International Biodeterioration & Biodegradation, vol. 47, no. 3, pp. 183-191, 2001.
- [4] C. Tascioglu, M. Tufan, M. Yalcin, and S. Sen, “Determination of biological performance, dimensional stability, mechanical and thermal properties of wood–plastic composites produced from recycled chromated copper arsenate-treated wood,” Journal of Thermoplastic Composite Materials. vol. 29, no.11, pp. 1461-1479, 2016.
- [5] C. Clausen, “Improving the two-step remediation process for CCA-treated wood: Part I. Evaluating oxalic acid extraction,” Waste Management, vol. 24, no. 4, pp. 401-405, 2004.
- [6] S. Sen, H. Hafizoglu, and M. Digrak, “Investigation of wood preservative activities of some plant extracts as fungicide,” KSU Journal of Science and Engineering, vol. 5, no. 1, pp. 99-110, 2002.
- [7] E.D. Suttie “Novel wood preservatives,” Chemistry & Industry, vol. 18, pp. 720-724, 1997.
- [8] P. Viitaniemi, S. Jämsä, P. Ek, and H. Viitanen, “Method for improving biodegradation resistance and dimensional stability of cellulosic products,” U.S. Patent WO/1994/027102, 24 November, 1994.
- [9] G.T. Pott, D. Hueting, and J. Deursen, “A commercially attractive method to reduce moisture sensitivity of lignocellulose fibres, without the use of chemicals,” Third International Symposium Bioresource Hemp 2000 and Other Fibre Crops, Wolfsburg, Germany, 2000.
- [10] Test methods for determining the effectiveness of wood preservatives and their performance requirements. Japan Indusrtrial Standarts K 1571, Tokyo, Japan, 2004.
- [11] R. J. Gosselink, A. M. Krosse, J. van der Putten, J. van der Kolk, B. de Klerk-Engels, and J. E. van Dam, “Wood preservation by low-temperature carbonisation,” Industrial Crops and Products, Vol. 19, pp. 3–12. 2004.
- [12] M. Yalçın, H. H. Doğan, and Ç. Akçay, “Identification of wood‐decay fungi and assessment of damage in log depots of Western Black Sea Region (Turkey),” Forest pathology. 2019.
- [13] A.P. Erten, Ormancılık araştırma enstitüsü yayınları, muhtelif yayınlar serisi no: 36, Ankara. 1980.
- [14] A. Berkel, Y. Bozkurt, ve Y. Göker, “Kayında ardaklanma, meşede kahverengi şeritlilik ile her iki ağaç cinsinde çatlamanın önlenmesi üzerine bir deneme,” İstanbul Üniversitesi Orman Fakültesi Dergisi, c. 28, s. 1. ss. 16-16, 1978.